master
madrocketsci 4 weeks ago
parent 0866d42781
commit b722664be4

@ -16,7 +16,7 @@ builddir = "./build_linux64"
doinstall = True #copies the build_output to the install dir when finished
cc = "g++" #compiler
cflags = "-fPIC"
libraries = "-l{}".format(libname)
libraries = "-l{} -lamsmathutil2.linux64".format(libname)
libdirs = "-L{} -L{}/lib".format(builddir,commondir)
linkerflags = "-static -static-libgcc -Wl,-rpath=."
srcexts = [".c",".cpp"]

@ -17,7 +17,7 @@ builddir = "./build_mingw64"
doinstall = False #copies the build_output to the install dir when finished
cc = "x86_64-w64-mingw32-g++" #compiler
cflags = "-fPIC -O3"
libraries = "-l{}".format(libname)
libraries = "-l{} -lamsmathutil2.mingw64".format(libname)
libdirs = "-L{} -L{}/lib -L{}/lib".format(builddir,commondir,depdir)
linkerflags = "-static -static-libgcc -Wl,-rpath=."
srcexts = [".c",".cpp"]

Binary file not shown.

Binary file not shown.

@ -4,11 +4,16 @@
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <vector>
#include <new>
#include <initializer_list>
#include <thread>
#include <amsmath/amsmath.hpp>
#include <amsutil/amsutil.hpp>
namespace ams
{
namespace narray
@ -114,5 +119,6 @@ void test_narray3();
#include <amscppnarray/amscppnarray_implinits.hpp>
#include <amscppnarray/amscppnarray_random.hpp>
#include <amscppnarray/amscppnarray_math.hpp>
#endif

@ -0,0 +1,28 @@
#ifndef __AMSCPPNARRAY_MATH_HPP__
#define __AMSCPPNARRAY_MATH_HPP__
namespace ams
{
namespace narray
{
template<typename T> T narray_max(const narray<T> &q);
template<typename T> T narray_min(const narray<T> &q);
template<typename T> double narray_mean(const narray<T> &q);
template<typename T> double narray_var(const narray<T> &q);
template<typename T> double narray_stdev(const narray<T> &q);
template<typename T> double narray_L2norm(const narray<T> &q);
template<typename T> T narray_sum(const narray<T> &q);
template<typename T> narray<T> narray_abs(narray<T> &q);
void narray_testmath1();
void narray_testmath2();
}; //end namespaces
};
#include <amscppnarray/amscppnarray_mathimpl.hpp>
#endif

@ -0,0 +1,381 @@
#ifndef __AMSCPPNARRAY_MATHIMPL_HPP__
#define __AMSCPPNARRAY_MATHIMPL_HPP__
namespace ams
{
namespace narray
{
template<typename T> T narray_max(const narray<T> &q)
{
return q.max();
}
template<typename T> T narray_min(const narray<T> &q)
{
return q.min();
}
template<typename T> void narray_sum_tf(
const narray<T> *in,
narray<T> *sums,
int threadnum,
int nthreads
)
{
int I0,I1,Is,I;
Is = in->length/nthreads;
I0 = Is*threadnum;
I1 = (threadnum>=(nthreads-1))? in->length: Is*(threadnum+1);
for(I=I0;I<I1;I++)
{
sums->data[threadnum] = sums->data[threadnum] + in->data[I];
}
}
template<typename T> T narray_sum(const narray<T> &q)
{
T ret = T();
narray<T> sums;
narray_size_t I;
int J;
int nthreads;
std::vector<std::thread*> threads;
if(q.length<=0)
{
return ret;
}
if(q.length<narray_thread_sz)
{
ret = T();
for(I=0;I<q.length;I++)
{
ret = ret + q.data[I];
}
}
else
{
//threaded operation
nthreads = std::thread::hardware_concurrency();
nthreads = (nthreads<1) ? 1 : nthreads;
nthreads = (nthreads>narray_max_threads) ? narray_max_threads : nthreads;
threads.resize(nthreads);
sums.resize(nthreads);
sums.setall(T());
for(J=0;J<nthreads;J++)
{
threads[J] = new(std::nothrow) std::thread(
&narray_sum_tf<T>,
&q,
&sums,
J,nthreads
);
if(threads[J]==NULL)
{
printf("narray_sum: warning: thread %d failed to initialize.\n",J);
//handle errors
}
}
for(J=0;J<nthreads;J++)
{
if(threads[J]!=NULL)
{
threads[J]->join();
delete threads[J];
threads[J]= NULL;
}
}
ret = T();
for(J=0;J<nthreads;J++)
{
ret = ret + sums.data[J];
}
}
return ret;
}
template<typename T> double narray_mean(const narray<T> &q)
{
double ret = 0.0;
T sum = narray_sum(q);
ret = (double)sum/((double)q.length);
return ret;
}
template<typename T> void narray_variance_tf(
const narray<T> *in,
narray<double> *sums,
double mean,
int threadnum,
int nthreads
)
{
int I0,I1,Is,I;
double q2;
Is = in->length/nthreads;
I0 = Is*threadnum;
I1 = (threadnum>=(nthreads-1))? in->length: Is*(threadnum+1);
for(I=I0;I<I1;I++)
{
q2 = in->data[I]-mean;
sums->data[threadnum] = sums->data[threadnum] + q2*q2/((double)in->length);
}
}
template<typename T> double narray_var(const narray<T> &q)
{
double ret = 0.0;
narray<double> sums;
narray_size_t I;
int J;
int nthreads;
std::vector<std::thread*> threads;
double mn = ams::narray::narray_mean(q);
double q2;
if(q.length<=0)
{
return ret;
}
if(q.length<narray_thread_sz)
{
ret = 0.0;
for(I=0;I<q.length;I++)
{
q2 = (double)q.data[I]-mn;
ret = ret + q2*q2/((double)q.length);
}
}
else
{
//threaded operation
nthreads = std::thread::hardware_concurrency();
nthreads = (nthreads<1) ? 1 : nthreads;
nthreads = (nthreads>narray_max_threads) ? narray_max_threads : nthreads;
threads.resize(nthreads);
sums.resize(nthreads);
sums.setall(T());
for(J=0;J<nthreads;J++)
{
threads[J] = new(std::nothrow) std::thread(
&narray_variance_tf<T>,
&q,
&sums,
mn,
J,nthreads
);
if(threads[J]==NULL)
{
printf("narray_var: warning: thread %d failed to initialize.\n",J);
//handle errors
}
}
for(J=0;J<nthreads;J++)
{
if(threads[J]!=NULL)
{
threads[J]->join();
delete threads[J];
threads[J]= NULL;
}
}
ret = T();
for(J=0;J<nthreads;J++)
{
ret = ret + sums.data[J];
}
}
return ret;
}
template<typename T> double narray_stdev(const narray<T> &q)
{
double ret = narray_var(q);
ret = ::sqrt(ret);
return ret;
}
template<typename T> void narray_L2norm_tf(
const narray<T> *in,
narray<double> *sums,
int threadnum,
int nthreads
)
{
int I0,I1,Is,I;
double q2;
Is = in->length/nthreads;
I0 = Is*threadnum;
I1 = (threadnum>=(nthreads-1))? in->length: Is*(threadnum+1);
for(I=I0;I<I1;I++)
{
q2 = in->data[I];
sums->data[threadnum] = sums->data[threadnum] + q2*q2;
}
}
template<typename T> double narray_L2norm(const narray<T> &q)
{
double ret = 0.0;
narray<double> sums;
narray_size_t I;
int J;
int nthreads;
std::vector<std::thread*> threads;
double q2;
if(q.length<=0)
{
return ret;
}
if(q.length<narray_thread_sz)
{
ret = 0.0;
for(I=0;I<q.length;I++)
{
q2 = (double)q.data[I];
ret = ret + q2*q2;
}
}
else
{
//threaded operation
nthreads = std::thread::hardware_concurrency();
nthreads = (nthreads<1) ? 1 : nthreads;
nthreads = (nthreads>narray_max_threads) ? narray_max_threads : nthreads;
threads.resize(nthreads);
sums.resize(nthreads);
sums.setall(T());
for(J=0;J<nthreads;J++)
{
threads[J] = new(std::nothrow) std::thread(
&narray_L2norm_tf<T>,
&q,
&sums,
J,nthreads
);
if(threads[J]==NULL)
{
printf("narray_L2norm: warning: thread %d failed to initialize.\n",J);
//handle errors
}
}
for(J=0;J<nthreads;J++)
{
if(threads[J]!=NULL)
{
threads[J]->join();
delete threads[J];
threads[J]= NULL;
}
}
ret = T();
for(J=0;J<nthreads;J++)
{
ret = ret + sums.data[J];
}
}
ret = ::sqrt(ret);
return ret;
}
template<typename T> void narray_abs_tf(
const narray<T> *in,
narray<T> *out,
int threadnum,
int nthreads
)
{
int I0,I1,Is,I;
double q2;
Is = in->length/nthreads;
I0 = Is*threadnum;
I1 = (threadnum>=(nthreads-1))? in->length: Is*(threadnum+1);
for(I=I0;I<I1;I++)
{
out->data[I] = (in->data[I]<T(0)) ? -in->data[I] : in->data[I];
}
}
template<typename T> narray<T> narray_abs(narray<T> &q)
{
narray<T> ret;
narray_size_t I;
int J;
int nthreads;
std::vector<std::thread*> threads;
if(q.length<=0)
{
ret.resize(0);
return ret;
}
ret.resize(q.length);
if(ret.length!=q.length)
{
printf("narray_abs: error - could not allocate return array.\n");
ret.resize(0);
return ret;
}
if(q.length<narray_thread_sz)
{
for(I=0;I<q.length;I++)
{
ret.data[I] = (q.data[I]<T(0)) ? -q.data[I] : q.data[I];
}
}
else
{
//threaded operation
nthreads = std::thread::hardware_concurrency();
nthreads = (nthreads<1) ? 1 : nthreads;
nthreads = (nthreads>narray_max_threads) ? narray_max_threads : nthreads;
threads.resize(nthreads);
for(J=0;J<nthreads;J++)
{
threads[J] = new(std::nothrow) std::thread(
&narray_abs_tf<T>,
&q,
&ret,
J,nthreads
);
if(threads[J]==NULL)
{
printf("narray_abs: warning: thread %d failed to initialize.\n",J);
//handle errors
}
}
for(J=0;J<nthreads;J++)
{
if(threads[J]!=NULL)
{
threads[J]->join();
delete threads[J];
threads[J]= NULL;
}
}
}
return ret;
}
}; //end namespaces
};
#endif

@ -5,7 +5,70 @@ namespace ams
{
namespace narray
{
namespace rand
{
//Random functions for numeric array class
////////////////////////////////////////////////////////////////////////
//Simple Deterministic Psuedorandom Number Generator (32 bit version) //
////////////////////////////////////////////////////////////////////////
static const int32_t dpr32_mod = ( ((int32_t)1) << ((int32_t)30) ) - (int32_t)1;
static const int32_t dpr32_mult1 = ( (int32_t) 1201633 );
static int32_t dpr32_rseed = 0; // global random number seed for numeric array class
int32_t dpr32_nextseed(int32_t seed);
double dpr32_randd(int32_t *seed);
float dpr32_randf(int32_t *seed);
double dpr32_gaussian(int32_t *seed);
float dpr32_gaussianf(int32_t *seed);
int dpr32_randint(int32_t *seed, int low, int high);
ams::vect2 dpr32_randuvect2(int32_t *seed);
ams::vect3 dpr32_randuvect3(int32_t *seed);
ams::vect4 dpr32_randuvect4(int32_t *seed);
ams::vect2f dpr32_randuvect2f(int32_t *seed);
ams::vect3f dpr32_randuvect3f(int32_t *seed);
ams::vect4f dpr32_randuvect4f(int32_t *seed);
////////////////////////////////////////////
//Numeric array threaded random generators//
////////////////////////////////////////////
int32_t get_rseed();
void set_rseed(int32_t seed);
void set_rseed_withtimer();
narray<double> narray_rand(narray_size_t N,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
narray<float> narray_randf(narray_size_t N,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
narray<double> narray_randgauss(narray_size_t N,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
narray<float> narray_randgaussf(narray_size_t N,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
narray<int> narray_randint(narray_size_t N, int low, int highexcl,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
narray<vect2> narray_randuvect2(narray_size_t N,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
narray<vect3> narray_randuvect3(narray_size_t N,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
narray<vect4> narray_randuvect4(narray_size_t N,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
narray<vect2f> narray_randuvect2f(narray_size_t N,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
narray<vect3f> narray_randuvect3f(narray_size_t N,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
narray<vect4f> narray_randuvect4f(narray_size_t N,
int32_t *rseed = &(ams::narray::rand::dpr32_rseed));
void test_random1();
};
};
};

@ -0,0 +1,85 @@
#include <amscppnarray/amscppnarray.hpp>
namespace ams
{
namespace narray
{
static void _intl_printarr(narray<int> &q)
{
int I;
if(q.length>0)
{
printf("{");
for(I=0;I<q.length-1;I++) printf("%d,",q[I]);
printf("%d}",q[q.length-1]);
}
else
{
printf("{}");
}
}
static void _intl_printarr(narray<double> &q)
{
int I;
if(q.length>0)
{
printf("{");
for(I=0;I<q.length-1;I++) printf("%1.3f,",q[I]);
printf("%1.3f}",q[q.length-1]);
}
else
{
printf("{}");
}
}
void narray_testmath1()
{
narray<int> a = {-4,-3,-2,-1,0,1,2,3,4,5};
narray<int> b;
int asum = narray_sum(a);
double amean = narray_mean(a);
printf("sum(a)=%d\n",asum);
printf("mean(a)=%1.3f\n",amean);
printf("stdev(a)=%1.3f\n",narray_stdev(a));
printf("L2norm(a)=%1.3f\n",narray_L2norm(a));
printf("min(a)=%d\n",narray_min(a));
printf("max(a)=%d\n",narray_max(a));
b = narray_abs(a);
_intl_printarr(b); printf("\n");
return;
}
void narray_testmath2()
{
rand::set_rseed_withtimer();
narray<double> unif = ams::narray::rand::narray_rand(10000);
double mn1 = narray_mean(unif);
double std1 = narray_stdev(unif);
double mn2,std2;
//_intl_printarr(unif); printf("\n");
unif = unif*2.0-1.0;
//_intl_printarr(unif); printf("\n");
mn2 = narray_mean(unif);
std2 = narray_stdev(unif);
printf("mn1=%1.3f std1=%1.3f\n",mn1,std1);
printf("mn2=%1.3f std2=%1.3f\n",mn2,std2);
return;
}
};
};

@ -3,9 +3,584 @@
namespace ams
{
namespace narray
{
namespace rand
{
int32_t dpr32_nextseed(int32_t seed)
{
int32_t sret = seed;
sret = ams::mod(sret*dpr32_mult1+1,dpr32_mod);
return sret;
}
double dpr32_randd(int32_t *seed)
{
double ret;
*seed = ams::narray::rand::dpr32_nextseed(*seed);
ret = (double)*seed/(double)(dpr32_mod-1);
return ret;
}
float dpr32_randf(int32_t *seed)
{
float ret;
*seed = ams::narray::rand::dpr32_nextseed(*seed);
ret = (float)*seed/(float)(dpr32_mod-1);
return ret;
}
double dpr32_gaussian(int32_t *seed)
{
double ret = 0.0;
double u1,u2;
u1 = ams::narray::rand::dpr32_randd(seed);
u2 = ams::narray::rand::dpr32_randd(seed);
if(u1>0.0)
{
ret = ::sqrt(-2.0*::log(u1))*::cos(2.0*pi*u2);
}
return ret;
}
float dpr32_gaussianf(int32_t *seed)
{
float ret = 0.0f;
float u1,u2;
u1 = ams::narray::rand::dpr32_randf(seed);
u2 = ams::narray::rand::dpr32_randf(seed);
if(u1>0.0)
{
ret = ::sqrt(-2.0f*::log(u1))*::cos(2.0f*pif*u2);
}
return ret;
}
vect2 dpr32_randuvect2(int32_t *seed)
{
vect2 ret = vect2(0,0);
double th = ams::narray::rand::dpr32_randd(seed)*2.0*pi;
ret = vect2(cos(th),sin(th));
return ret;
}
vect3 dpr32_randuvect3(int32_t *seed)
{
vect3 ret;
double az,el;
el = ::acos(2.0*dpr32_randd(seed)-1.0)-pi/2.0;
az = ams::narray::rand::dpr32_randd(seed)*2.0*pi;
ret = vect3(cos(az)*cos(el),sin(az)*cos(el),sin(el));
return ret;
}
vect4 dpr32_randuvect4(int32_t *seed)
{
vect4 ret;
double x,y,z,w;
x = ams::narray::rand::dpr32_gaussian(seed);
y = ams::narray::rand::dpr32_gaussian(seed);
z = ams::narray::rand::dpr32_gaussian(seed);
w = ams::narray::rand::dpr32_gaussian(seed);
ret = vect4(x,y,z,w);
ret = vnormalize(ret);
return ret;
}
vect2f dpr32_randuvect2f(int32_t *seed)
{
vect2f ret = vect2f(0,0);
float th = ams::narray::rand::dpr32_randf(seed)*2.0*pi;
ret = vect2f(cos(th),sin(th));
return ret;
}
vect3f dpr32_randuvect3f(int32_t *seed)
{
vect3f ret;
float az,el;
el = ::acos(2.0f*dpr32_randf(seed)-1.0)-pif/2.0;
az = ams::narray::rand::dpr32_randf(seed)*2.0f*pif;
ret = vect3f(cos(az)*cos(el),sin(az)*cos(el),sin(el));
return ret;
}
vect4f dpr32_randuvect4f(int32_t *seed)
{
vect4f ret;
float x,y,z,w;
x = ams::narray::rand::dpr32_gaussianf(seed);
y = ams::narray::rand::dpr32_gaussianf(seed);
z = ams::narray::rand::dpr32_gaussianf(seed);
w = ams::narray::rand::dpr32_gaussianf(seed);
ret = vect4f(x,y,z,w);
ret = vnormalize(ret);
return ret;
}
int32_t get_rseed()
{
return ams::narray::rand::dpr32_rseed;
}
void set_rseed(int32_t seed)
{
ams::narray::rand::dpr32_rseed = seed;
}
void set_rseed_withtimer()
{
int32_t t1 = (int32_t)time(NULL);
int32_t t2 = (int32_t)(::fmod((double)clock()/((double)CLOCKS_PER_SEC)*1000.0f,36000.0f));
ams::narray::rand::dpr32_rseed = (int32_t)t1 + (int32_t)t2;
}
template<typename T> void narray_rand_threadf1(
narray<T> *out,
narray<int32_t> *rseeds,
T (*randfunc)(int32_t *),
int threadnum,
int nthreads
)
{
int I0,I1,Is,I;
Is = out->length/nthreads;
I0 = Is*threadnum;
I1 = (threadnum>=(nthreads-1)) ? out->length : Is*(threadnum+1);
for(I=I0;I<I1;I++)
{
out->data[I] = randfunc(&(rseeds->data[threadnum]));
}
return;
}
template<typename T> void narray_random_threadexec1(
narray<T> *out,
narray_size_t N,
T (*randfunc)(int32_t *),
int32_t *rseed
)
{
narray_size_t I;
int J;
int nthreads;
std::vector<std::thread*> threads;
narray<int32_t> rseeds;
int res;
res = out->resize(N);
if(res!=narray_success)
{
out->resize(0);
return;
}
if(N<narray_thread_sz)
{
//single threaded
for(I=0;I<N;I++)
{
out->data[I] = randfunc(rseed);
}
}
else
{
//multi-threaded operation
nthreads = std::thread::hardware_concurrency();
nthreads = (nthreads<1) ? 1 : nthreads;
nthreads = (nthreads>narray_max_threads) ? narray_max_threads : nthreads;
threads.resize(nthreads);
rseeds.resize(nthreads);
for(J=0;J<nthreads;J++)
{
*rseed = dpr32_nextseed(*rseed);
rseeds.data[J] = *rseed + 13*J;
}
for(J=0;J<nthreads;J++)
{
threads[J] = new(std::nothrow) std::thread(
&narray_rand_threadf1<T>,
out,
&rseeds,
randfunc,
J,nthreads
);
if(threads[J]==NULL)
{
//handle thread allocation error
printf("warning: narray_random_threadexec1:: thread %d failed to allocate.\n",J);
}
}
for(J=0;J<nthreads;J++)
{
if(threads[J]!=NULL)
{
threads[J]->join();
delete threads[J];
threads[J]= NULL;
}
}
}
return;
}
narray<double> narray_rand(narray_size_t N,
int32_t *rseed)
{
narray<double> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec1(
&ret,
N,
&(ams::narray::rand::dpr32_randd),
rseed
);
return ret;
}
narray<float> narray_randf(narray_size_t N,
int32_t *rseed)
{
narray<float> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec1(
&ret,
N,
&(ams::narray::rand::dpr32_randf),
rseed
);
return ret;
}
narray<double> narray_randgauss(narray_size_t N,
int32_t *rseed)
{
narray<double> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec1(
&ret,
N,
&(ams::narray::rand::dpr32_gaussian),
rseed
);
return ret;
}
narray<float> narray_randgaussf(narray_size_t N,
int32_t *rseed)
{
narray<float> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec1(
&ret,
N,
&(ams::narray::rand::dpr32_gaussianf),
rseed
);
return ret;
}
narray<vect2> narray_randuvect2(narray_size_t N,
int32_t *rseed)
{
narray<vect2> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec1(
&ret,
N,
&(ams::narray::rand::dpr32_randuvect2),
rseed
);
return ret;
}
narray<vect3> narray_randuvect3(narray_size_t N,
int32_t *rseed)
{
narray<vect3> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec1(
&ret,
N,
&(ams::narray::rand::dpr32_randuvect3),
rseed
);
return ret;
}
narray<vect4> narray_randuvect4(narray_size_t N,
int32_t *rseed)
{
narray<vect4> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec1(
&ret,
N,
&(ams::narray::rand::dpr32_randuvect4),
rseed
);
return ret;
}
narray<vect2f> narray_randuvect2f(narray_size_t N,
int32_t *rseed)
{
narray<vect2f> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec1(
&ret,
N,
&(ams::narray::rand::dpr32_randuvect2f),
rseed
);
return ret;
}
narray<vect3f> narray_randuvect3f(narray_size_t N,
int32_t *rseed)
{
narray<vect3f> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec1(
&ret,
N,
&(ams::narray::rand::dpr32_randuvect3f),
rseed
);
return ret;
}
narray<vect4f> narray_randuvect4f(narray_size_t N,
int32_t *rseed)
{
narray<vect4f> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec1(
&ret,
N,
&(ams::narray::rand::dpr32_randuvect4f),
rseed
);
return ret;
}
int dpr32_randint(int32_t *seed, int low, int high)
{
int ret = 0;
int val;
if(high-low>0)
{
*seed = dpr32_nextseed(*seed);
val = low + (int)(*seed)%(high-low);
}
return ret;
}
template<typename T> void narray_rand_threadf2(
narray<T> *out,
narray<int32_t> *rseeds,
T (*randfunc)(int32_t *, T, T),
T low,
T highexcl,
int threadnum,
int nthreads
)
{
int I0,I1,Is,I;
Is = out->length/nthreads;
I0 = Is*threadnum;
I1 = (threadnum>=(nthreads-1)) ? out->length : Is*(threadnum+1);
for(I=I0;I<I1;I++)
{
out->data[I] = randfunc(&(rseeds->data[threadnum]),low,highexcl);
}
return;
}
template<typename T> void narray_random_threadexec2(
narray<T> *out,
narray_size_t N,
T (*randfunc)(int32_t *, T, T),
T low,
T highexcl,
int32_t *rseed
)
{
narray_size_t I;
int J;
int nthreads;
std::vector<std::thread*> threads;
narray<int32_t> rseeds;
int res;
res = out->resize(N);
if(res!=narray_success)
{
out->resize(0);
return;
}
if(N<narray_thread_sz)
{
//single threaded
for(I=0;I<N;I++)
{
out->data[I] = randfunc(rseed,low,highexcl);
}
}
else
{
//multi-threaded operation
nthreads = std::thread::hardware_concurrency();
nthreads = (nthreads<1) ? 1 : nthreads;
nthreads = (nthreads>narray_max_threads) ? narray_max_threads : nthreads;
threads.resize(nthreads);
rseeds.resize(nthreads);
for(J=0;J<nthreads;J++)
{
*rseed = dpr32_nextseed(*rseed);
rseeds.data[J] = *rseed + 13*J;
}
for(J=0;J<nthreads;J++)
{
threads[J] = new(std::nothrow) std::thread(
&narray_rand_threadf2<T>,
out,
&rseeds,
randfunc,
low,highexcl,
J,nthreads
);
if(threads[J]==NULL)
{
//handle thread allocation error
printf("warning: narray_random_threadexec1:: thread %d failed to allocate.\n",J);
}
}
for(J=0;J<nthreads;J++)
{
if(threads[J]!=NULL)
{
threads[J]->join();
delete threads[J];
threads[J]= NULL;
}
}
}
return;
}
narray<int> narray_randint(narray_size_t N, int low, int highexcl,
int32_t *rseed)
{
narray<int> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
narray_random_threadexec2(
&ret,
N,
&(ams::narray::rand::dpr32_randint),
low,highexcl,
rseed
);
return ret;
}
}; //end namespace rand
}; //end namespaces
};

@ -7,6 +7,7 @@ int main(int argc, char* argv[])
//ams::narray::test_narray1();
//ams::narray::test_narray2();
//ams::narray::test_narray3();
ams::narray::narray_testmath2();
return ret;
}
Loading…
Cancel
Save