random updates

master
Aaron 7 days ago
parent d658df27b3
commit 3776946155

@ -8,6 +8,9 @@
},
{
"path": "../amscppnarray"
},
{
"path": "../../sourceprojs23/amscpptimelib"
}
]
}

Binary file not shown.

@ -13,7 +13,7 @@ namespace cmp
complex();
complex(double _r, double _i);
complex(double _r);
explicit complex(double _r);
complex(const complex &other);
complex& operator=(const complex& other);
complex& operator=(const double other);

@ -13,7 +13,7 @@ namespace cmp
complex64();
complex64(float _r, float _i);
complex64(float _r);
explicit complex64(float _r);
complex64(const complex64 &other);
complex64& operator=(const complex64& other);
complex64& operator=(const float other);

@ -11,17 +11,36 @@ typedef ::int64_t amsmu_randt2;
static const amsmu_randt1 dpr32_mod = ( ((amsmu_randt1)1) << ((amsmu_randt1)30) ) - (amsmu_randt1)1;
static const amsmu_randt1 dpr32_mult1 = ( (amsmu_randt1) 1201633 );
static const amsmu_randt1 dpr32_add1 = ( (amsmu_randt1) 293482 );
static const amsmu_randt1 dpr32_add1 = ( (amsmu_randt1) 293487 );
static const amsmu_randt2 dpr64_mod = ( ((amsmu_randt2)1) << ((amsmu_randt2)62) ) - (amsmu_randt2)1;
static const amsmu_randt2 dpr64_mult1 = ( (amsmu_randt2) 1201633L );
static const amsmu_randt2 dpr64_add1 = ( (amsmu_randt2) 293482L );
static const amsmu_randt2 dpr64_add1 = ( (amsmu_randt2) 293487L );
extern amsmu_randt1 dpr32_rseed;
extern amsmu_randt2 dpr64_rseed;
amsmu_randt1 dpr32_nextseed(amsmu_randt1 seed);
amsmu_randt2 dpr64_nextseed(amsmu_randt2 seed);
amsmu_randt1 seed32_next(amsmu_randt1 seed);
amsmu_randt2 seed64_next(amsmu_randt2 seed);
double rand(amsmu_randt1 *seed = &dpr32_rseed);
float randf(amsmu_randt1 *seed = &dpr32_rseed);
double randgaussian(amsmu_randt1 *seed = &dpr32_rseed);
float randgaussianf(amsmu_randt1 *seed = &dpr32_rseed);
int randint(int low, int highexcl, amsmu_randt1 *seed = &dpr32_rseed);
int64_t randintl(int64_t low, int64_t highexcl, amsmu_randt2 *seed = &dpr64_rseed);
void seed32_set(amsmu_randt1 _seed);
void seed64_set(amsmu_randt2 _seed);
void seed_init_timer();
//Threaded generation of random amsarrays
amsarray<double> amsarray_rand(amsarray_size_t N, amsmu_randt1 *seed = &dpr32_rseed);
amsarray<float> amsarray_randf(amsarray_size_t N, amsmu_randt1 *seed = &dpr32_rseed);
amsarray<int> amsarray_randint(amsarray_size_t N, int low, int highexcl, amsmu_randt1 *seed = &dpr32_rseed);
amsarray<int64_t> amsarray_randintl(amsarray_size_t N, int64_t low, int64_t highexcl, amsmu_randt2 *seed = &dpr64_rseed);

@ -8,9 +8,11 @@ namespace amsmathutil25
void test_amsarray1();
void test_amsarray2();
void test_select();
void test_amsarray_sort();
void test_amsarray_select();
void test_amsarray_sort1();
}; //end namespace amsmathutil25
}; //end namespace ams

@ -7,6 +7,8 @@ namespace ams
static const int amsarray_success = amsmathutil25_success;
static const int amsarray_failure = amsmathutil25_failure;
static const int amsarray_sortthreadpsize = 5000;
template<typename T> class amsarray
{
public:
@ -109,6 +111,9 @@ namespace ams
// {0, 1, 2, .... N}
amsarray<amsarray_size_t> permutation_identity(amsarray_size_t _length);
void _debug_amsarray_print(amsarray<double> *array, bool newline=1,int printstyle=0);
void _debug_amsarray_print(amsarray<long> *array, bool newline=1,int printstyle=0);
}; //end namespace ams

@ -41,9 +41,10 @@ template<typename T> int amsarray_quicksort_round(
if(v2<v1)
{
//swap permutation indices
tmp = permarray->data[range.a];
permarray->data[range.a] = permarray->data[range.b-1];
permarray->data[range.b-1] = tmp;
amsarray_permutation_swap(permarray,range.a,range.b-1);
// tmp = permarray->data[range.a];
// permarray->data[range.a] = permarray->data[range.b-1];
// permarray->data[range.b-1] = tmp;
}
//there is no more work to be done within this range
*leftrange = ams::pair<amsarray_size_t,amsarray_size_t>(-1,-1);
@ -63,18 +64,28 @@ template<typename T> int amsarray_quicksort_round(
amsarray_permutation_swap(permarray,P,range.b-1);
P = range.b-1;
// amsarray_permutation_swap(permarray,P,range.a);
// P = range.a;
J = range.a;
for(I=range.a;I<range.b-1;I++)
{
//printf("debug: I=%ld, J=%ld, P=%ld, a=%1.3f, b=%1.3f\n",I,J,P,
// (double)array->data[permarray->data[I]],(double)array->data[permarray->data[P]]);
if(array->data[permarray->data[I]]<array->data[permarray->data[P]])
{
if(J!=I)
{
//printf("debug: swap\n");
amsarray_permutation_swap(permarray,I,J);
J++;
}
else
{
//printf("debug: skip\n");
J++;
}
}
@ -119,6 +130,42 @@ template<typename T> int amsarray_quicksort_round(
return ret;
}
template<typename T> int amsarray_quicksort_subrange(
amsarray<T> *array, //size N - array to sort
amsarray<amsarray_size_t> *permarray, //size N - permutation of sorting
ams::pair<amsarray_size_t,amsarray_size_t> _range
)
{
int ret = amsarray_success;
int res;
amsarray<ams::pair<amsarray_size_t,amsarray_size_t>> ranges;
amsarray_size_t rangeptr = 0;
ams::pair<amsarray_size_t,amsarray_size_t> range,rangeleft,rangeright;
ranges.append(_range);
rangeptr = 0;
while(rangeptr<ranges.length)
{
//printf("debug2:"); _debug_amsarray_print(permarray);
range = ranges[rangeptr];
rangeptr++;
//printf("debug3: range=(%d,%d)\n",(int)range.a,(int)range.b);
amsarray_quicksort_round(array,permarray,range,&rangeleft,&rangeright);
if(rangeleft.a>=0 && rangeleft.b>rangeleft.a)
{
ranges.append(rangeleft);
}
if(rangeright.a>=0 && rangeright.b>rangeright.a)
{
ranges.append(rangeright);
}
}
return ret;
}
template<typename T> int amsarray_quicksort_unthreaded(
amsarray<T> *array, //size N - array to sort
amsarray<amsarray_size_t> *permarray //size N - permutation of sorting
@ -145,8 +192,10 @@ template<typename T> int amsarray_quicksort_unthreaded(
rangeptr = 0;
while(rangeptr<ranges.length)
{
//printf("debug2:"); _debug_amsarray_print(permarray);
range = ranges[rangeptr];
rangeptr++;
//printf("debug3: range=(%d,%d)\n",(int)range.a,(int)range.b);
amsarray_quicksort_round(array,permarray,range,&rangeleft,&rangeright);
if(rangeleft.a>=0 && rangeleft.b>rangeleft.a)
{
@ -173,31 +222,48 @@ template<typename T> void amsarray_quicksort_tf(
ams::pair<amsarray_size_t,amsarray_size_t> rangeleft,rangeright;
res = amsarray_quicksort_round(
array,
permarray,
range,
&rangeleft,
&rangeright
);
if(range.b-range.a < amsarray_sortthreadpsize)
{
res = amsarray_quicksort_subrange(
array,
permarray,
range
);
//there should be no work to be done after this
}
else
{
//range is too big, quicksort the pivot and supply subranges
res = amsarray_quicksort_round(
array,
permarray,
range,
&rangeleft,
&rangeright
);
{ //scope wrapper for std::lock_guard
std::lock_guard<std::mutex> lock(*threadlock);
//critical section
if(rangeleft.a>=0 && rangeleft.b>rangeleft.a)
{
ranges->append(rangeleft);
}
if(rangeright.a>=0 && rangeright.b>rangeright.a)
{
ranges->append(rangeright);
{ //scope wrapper for std::lock_guard
std::lock_guard<std::mutex> lock(*threadlock);
//critical section
if(rangeleft.a>=0 && rangeleft.b>rangeleft.a)
{
ranges->append(rangeleft);
}
if(rangeright.a>=0 && rangeright.b>rangeright.a)
{
ranges->append(rangeright);
}
}
//end critical section (end of function)
}
//end critical section (end of function)
return;
}
//TODO - if the range falls below a specified size, I want to be able to run through
// quicksorting the entire range within a thread before returning
template<typename T> int amsarray_quicksort_threaded(
amsarray<T> *array, //size N - array to sort
amsarray<amsarray_size_t> *permarray //size N - permutation of sorting
@ -240,9 +306,13 @@ template<typename T> int amsarray_quicksort_threaded(
nthreads = ranges.length-rangeptr;
nthreads = (nthreads>maxthreads) ? maxthreads : nthreads;
//printf("debug: %d %d %ld %ld\n",nthreads,maxthreads,rangeptr,ranges.length);
for(I=0;I<nthreads;I++)
{
range = ranges[rangeptr+I];
threadlock.lock();
range = ranges[rangeptr]; rangeptr++;
threadlock.unlock();
//printf("debug: thread %ld exec with range(%ld,%ld), rptr=%ld rlen=%ld\n",I,range.a,range.b,rangeptr,ranges.length);
threads[I] = new(std::nothrow) std::thread(
amsarray_quicksort_tf<T>,
array,permarray,
@ -259,6 +329,7 @@ template<typename T> int amsarray_quicksort_threaded(
ret = amsarray_failure;
}
}
//printf("debug3\n");
for(I=0;I<nthreads;I++)
{
if(threads[I]!=NULL)
@ -267,7 +338,7 @@ template<typename T> int amsarray_quicksort_threaded(
delete threads[I];
threads[I] = NULL;
}
rangeptr++;
//rangeptr++;
}
}
@ -292,7 +363,7 @@ template<typename T> int amsarray_quicksort(
}
}
if(array->length<amsmathutil25_threadpsz)
if(array->length<amsarray_sortthreadpsize)
{
//perform unthreaded quicksort
ret = amsarray_quicksort_unthreaded(

@ -28,6 +28,9 @@ public:
triple(const T1 &_a, const T2& _b, const T3& _c) {a = _a; b = _b; c = _c;}
};
//returns time in msec
double time_msec();
}; //end namespace ams
#include <amsmathutil25/util/amsmathutil25_utilimpl.hpp>

@ -2,8 +2,6 @@
namespace ams
{
namespace amsmathutil25
{
bool isnan(double d)
{
@ -210,5 +208,4 @@ int64_t abs(int64_t a)
return ret;
}
};
};
}; //end namespace ams

@ -8,22 +8,387 @@ namespace rand
amsmu_randt1 dpr32_rseed;
amsmu_randt2 dpr64_rseed;
amsmu_randt1 dpr32_nextseed(amsmu_randt1 seed)
amsmu_randt1 seed32_next(amsmu_randt1 seed)
{
amsmu_randt1 sret = seed;
sret = ams::mod(sret*dpr32_mult1+dpr32_add1,dpr32_mod);
return sret;
}
amsmu_randt2 dpr64_nextseed(amsmu_randt2 seed)
amsmu_randt2 seed64_next(amsmu_randt2 seed)
{
amsmu_randt2 sret = seed;
sret = ams::mod(sret*dpr64_mult1+dpr64_add1,dpr64_mod);
return sret;
}
double rand(amsmu_randt1 *seed)
{
double ret = 0.0;
*seed = seed32_next(*seed);
ret = ((double) *seed) / ((double)(dpr32_mod-1));
return ret;
}
float randf(amsmu_randt1 *seed)
{
float ret = 0.0;
*seed = seed32_next(*seed);
ret = ((float) *seed) / ((float)(dpr32_mod-1));
return ret;
}
double randgaussian(amsmu_randt1 *seed)
{
double ret = 0.0;
double u1,u2;
u1 = rand(seed);
u2 = rand(seed);
if(u1>0.0)
{
ret = ::sqrt(-2.0*::log(u1))*::cos(2.0*ams::pi*u2);
}
return ret;
}
float randgaussianf(amsmu_randt1 *seed)
{
float ret = 0.0;
float u1,u2;
u1 = randf(seed);
u2 = randf(seed);
if(u1>0.0f)
{
ret = ::sqrtf(-2.0*::logf(u1))*::cosf(2.0f*ams::pif*u2);
}
return ret;
}
int randint(int low, int highexcl, amsmu_randt1 *seed)
{
int ret = 0;
if(highexcl-low>0)
{
*seed = seed32_next(*seed);
ret = low + (int)((*seed)%(highexcl-low));
}
return ret;
}
int64_t randintl(int64_t low, int64_t highexcl, amsmu_randt2 *seed)
{
int64_t ret = 0;
if(highexcl-low>0)
{
*seed = seed64_next(*seed);
ret = low + (int)((*seed)%(highexcl-low));
}
return ret;
}
void seed32_set(amsmu_randt1 _seed)
{
dpr32_rseed = _seed;
return;
}
void seed64_set(amsmu_randt2 _seed)
{
dpr64_rseed = _seed;
return;
}
void seed_init_timer()
{
amsmu_randt1 t1 = (amsmu_randt1)time(NULL);
amsmu_randt1 t2 = (amsmu_randt1)(::fmod((double)clock()/((double)CLOCKS_PER_SEC)*1000.0f,36000.0f));
dpr32_rseed = (amsmu_randt1)t1 + (amsmu_randt1)t2;
amsmu_randt2 t3 = (amsmu_randt2)time(NULL);
amsmu_randt2 t4 = (amsmu_randt2)(::fmod((double)clock()/((double)CLOCKS_PER_SEC)*1000.0f,36000.0f));
dpr64_rseed = (amsmu_randt2)t3 + (amsmu_randt2)t4;
return;
}
//Threaded generation of random amsarrays
template<typename T> void amsarray_rand_threadf1(
amsarray<T> *out,
amsarray<amsmu_randt1> *rseeds,
T (*randfunc)(amsmu_randt1 *),
int threadnum,
int nthreads
)
{
int I0,I1,Is,I;
Is = out->length/nthreads;
I0 = Is*threadnum;
I1 = (threadnum>=(nthreads-1)) ? out->length : Is*(threadnum+1);
for(I=I0;I<I1;I++)
{
out->data[I] = randfunc(&(rseeds->data[threadnum]));
}
return;
}
template<typename T> void amsarray_random_threadexec1(
amsarray<T> *out,
amsarray_size_t N,
T (*randfunc)(amsmu_randt1 *),
amsmu_randt1 *rseed
)
{
amsarray_size_t I;
int J;
int nthreads;
std::vector<std::thread*> threads;
ams::amsarray<amsmu_randt1> rseeds;
int res;
res = out->resize(N);
if(res!=amsarray_success)
{
out->resize(0);
return;
}
if(N<amsmathutil25_threadpsz)
{
//single threaded
for(I=0;I<N;I++)
{
out->data[I] = randfunc(rseed);
}
}
else
{
//multi-threaded operation
nthreads = std::thread::hardware_concurrency();
nthreads = (nthreads<1) ? 1 : nthreads;
nthreads = (nthreads>amsmathutil25_maxthreads) ? amsmathutil25_maxthreads : nthreads;
threads.resize(nthreads);
rseeds.resize(nthreads);
for(J=0;J<nthreads;J++)
{
*rseed = seed32_next(*rseed);
rseeds.data[J] = *rseed + 13*J;
}
for(J=0;J<nthreads;J++)
{
threads[J] = new(std::nothrow) std::thread(
&amsarray_rand_threadf1<T>,
out,
&rseeds,
randfunc,
J,nthreads
);
if(threads[J]==NULL)
{
//handle thread allocation error
printf("warning: amsarray_random_threadexec1:: thread %d failed to allocate.\n",J);
}
}
for(J=0;J<nthreads;J++)
{
if(threads[J]!=NULL)
{
threads[J]->join();
delete threads[J];
threads[J]= NULL;
}
}
}
return;
}
amsarray<double> amsarray_rand(amsarray_size_t N, amsmu_randt1 *seed)
{
amsarray<double> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
amsarray_random_threadexec1(
&ret,
N,
&(rand),
seed
);
return ret;
}
amsarray<float> amsarray_randf(amsarray_size_t N, amsmu_randt1 *seed)
{
amsarray<float> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
amsarray_random_threadexec1(
&ret,
N,
&(randf),
seed
);
return ret;
}
template<typename T, typename T2> void amsarray_rand_threadf2(
amsarray<T> *out,
amsarray<T2> *rseeds,
T (*randfunc)(T, T, T2*),
T low,
T highexcl,
int threadnum,
int nthreads
)
{
int I0,I1,Is,I;
Is = out->length/nthreads;
I0 = Is*threadnum;
I1 = (threadnum>=(nthreads-1)) ? out->length : Is*(threadnum+1);
for(I=I0;I<I1;I++)
{
out->data[I] = randfunc(low,highexcl,&(rseeds->data[threadnum]));
}
return;
}
template<typename T, typename T2> void amsarray_random_threadexec2(
amsarray<T> *out,
amsarray_size_t N,
T (*randfunc)(T, T, T2*),
T2 (*nextfunc)(T2),
T low,
T highexcl,
T2 *rseed
)
{
amsarray_size_t I;
int J;
int nthreads;
std::vector<std::thread*> threads;
amsarray<T2> rseeds;
int res;
res = out->resize(N);
if(res!=amsarray_success)
{
out->resize(0);
return;
}
if(N<amsmathutil25_threadpsz)
{
//single threaded
for(I=0;I<N;I++)
{
out->data[I] = randfunc(low,highexcl,rseed);
}
}
else
{
//multi-threaded operation
nthreads = std::thread::hardware_concurrency();
nthreads = (nthreads<1) ? 1 : nthreads;
nthreads = (nthreads>amsmathutil25_maxthreads) ? amsmathutil25_maxthreads : nthreads;
threads.resize(nthreads);
rseeds.resize(nthreads);
for(J=0;J<nthreads;J++)
{
*rseed = nextfunc(*rseed);
rseeds.data[J] = *rseed + 13*J;
}
for(J=0;J<nthreads;J++)
{
threads[J] = new(std::nothrow) std::thread(
&amsarray_rand_threadf2<T,T2>,
out,
&rseeds,
randfunc,
low,highexcl,
J,nthreads
);
if(threads[J]==NULL)
{
//handle thread allocation error
printf("warning: amsarray_random_threadexec2:: thread %d failed to allocate.\n",J);
}
}
for(J=0;J<nthreads;J++)
{
if(threads[J]!=NULL)
{
threads[J]->join();
delete threads[J];
threads[J]= NULL;
}
}
}
return;
}
amsarray<int> amsarray_randint(amsarray_size_t N, int low, int highexcl,
amsmu_randt1 *rseed)
{
amsarray<int> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
amsarray_random_threadexec2(
&ret,
N,
&(randint),
&(seed32_next),
low,highexcl,
rseed
);
return ret;
}
amsarray<int64_t> amsarray_randintl(amsarray_size_t N, int64_t low, int64_t highexcl, amsmu_randt2 *rseed)
{
amsarray<int64_t> ret;
if(N<=0)
{
ret.resize(0);
return ret;
}
amsarray_random_threadexec2(
&ret,
N,
&(randintl),
&(seed64_next),
low,highexcl,
rseed
);
return ret;
}
};
};
}; //end namespace rand
}; //end namespace ams

@ -87,6 +87,104 @@ void test_amsarray2()
{
printf("q[%ld]=%1.3f\n",I,q[I]);
}
}
void test_amsarray_select()
{
int I;
amsarray<double> a;
amsarray<amsarray_size_t> b;
amsarray<double> c;
a = ams::rand::amsarray_rand(100);
for(I=0;I<10;I++)
{
printf("a[%d]=%1.3f\n",I,a[I]);
}
b = amsarray<amsarray_size_t>({1,3,5,7});
c = a.select(b);
for(I=0;I<b.length;I++)
{
printf("b[%d] = %d: a[%d]=%1.3f, c[%d] = %1.3f\n",I,(int)b[I],(int)b[I],a[b[I]],I,c[I]);
}
a = ams::rand::amsarray_rand(30000);
b = (amsarray<amsarray_size_t>)ams::rand::amsarray_randintl(10000,0,a.length);
c = a.select(b);
for(I=b.length/2;I<b.length/2+10;I++)
{
printf("b[%d] = %d: a[%d]=%1.3f, c[%d] = %1.3f\n",I,(int)b[I],(int)b[I],a[b[I]],I,c[I]);
}
for(I=b.length-10;I<b.length;I++)
{
printf("b[%d] = %d: a[%d]=%1.3f, c[%d] = %1.3f\n",I,(int)b[I],(int)b[I],a[b[I]],I,c[I]);
}
return;
}
void test_amsarray_sort1()
{
int I;
amsarray<double> a,b;
amsarray<amsarray_size_t> q;
int K;
//int J;
amsarray_size_t bs;
double t0,t1;
ams::rand::seed_init_timer();
for(K=0;K<10;K++)
{
a = ams::rand::amsarray_rand(10000);
//_debug_amsarray_print(&a,1);
a.sort();
//_debug_amsarray_print(&a,1);
bool ordertest = 1;
for(I=0;I<a.length-1;I++)
{
if(a[I]>a[I+1])
{
ordertest = 0;
break;
}
}
if(ordertest==1)
printf("ordering test: passed.\n");
else
printf("ordering test: failed.\n");
}
bs = 100;
for(K=0;K<10;K++)
{
b = ams::rand::amsarray_rand(bs);
t0 = time_msec();
b.sort();
t1 = time_msec();
printf("sorted %ld in %1.3f msec.\n",bs,t1-t0);
bs*=2;
};
//a.print();
// q = permutation_identity(10000);
for(I=0;I<a.length && I<10;I++)
{
printf("a[%d]=%1.5f\n",I,a[I]);
}
}

@ -6,7 +6,6 @@ namespace ams
template<> void amsarray<int>::print(bool newline,int printstyle)
{
amsarray_size_t I;
printf("{");
if(data!=NULL)
{
@ -44,7 +43,6 @@ template<> void amsarray<long>::print(bool newline,int printstyle)
template<> void amsarray<float>::print(bool newline,int printstyle)
{
amsarray_size_t I;
printf("{");
if(data!=NULL)
{
@ -63,7 +61,6 @@ template<> void amsarray<float>::print(bool newline,int printstyle)
template<> void amsarray<double>::print(bool newline,int printstyle)
{
amsarray_size_t I;
printf("{");
if(data!=NULL)
{
@ -79,10 +76,49 @@ template<> void amsarray<double>::print(bool newline,int printstyle)
return;
}
void _debug_amsarray_print(amsarray<long> *array, bool newline,int printstyle)
{
amsarray_size_t I;
printf("{");
if(array->data!=NULL)
{
for(I=0;I<array->length-1;I++)
{
printf("%ld,",array->data[I]);
}
if(array->length>0) printf("%ld",array->data[array->length-1]);
}
printf("}");
if(newline==1) printf("\n");
return;
}
void _debug_amsarray_print(amsarray<double> *array, bool newline,int printstyle)
{
amsarray_size_t I;
printf("{");
if(array->data!=NULL)
{
for(I=0;I<array->length-1;I++)
{
printf("%1.4f,",array->data[I]);
}
if(array->length>0) printf("%1.4f",array->data[array->length-1]);
}
printf("}");
if(newline==1) printf("\n");
return;
}
// Explicit Class Instantiations?
template class amsarray<int>;
template class amsarray<float>;
template class amsarray<int64_t>;
template class amsarray<double>;
// template class amsarray<int>;
// template class amsarray<float>;
// template class amsarray<int64_t>;
// template class amsarray<double>;
};

@ -63,8 +63,8 @@ void amsarray_permutation_swap(amsarray<amsarray_size_t> *permutation, amsarray_
{
amsarray_size_t tmp;
tmp = permutation->data[I];
permutation->data[J] = permutation->data[I];
permutation->data[I] = tmp;
permutation->data[I] = permutation->data[J];
permutation->data[J] = tmp;
return;
}

@ -0,0 +1,16 @@
#include <amsmathutil25/amsmathutil25.hpp>
namespace ams
{
//returns time in msec
double time_msec()
{
double msec = 0.0;
clock_t c = clock();
msec = (double)c/(double) CLOCKS_PER_SEC * 1000.0;
return msec;
}
}; //end namespace ams

@ -7,5 +7,8 @@ int main(int argc, char* argv[])
//ams::amsmathutil25::test_amsarray1();
//ams::amsmathutil25::test_amsarray2();
//ams::amsmathutil25::test_amsarray_select();
ams::amsmathutil25::test_amsarray_sort1();
return ret;
}
Loading…
Cancel
Save