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S U M M A R Y
Spherical harmonic analysis of the main magnetic field of the Earth and its daily variations is
the numerical determination of coefficients of solid spherical harmonics in the mathematical
expressions used for the magnetic scalar potential of fields of internal and external origin.
The coefficients are determined from vector components of the field and their purpose is
to represent the vector field, not to reconstruct the magnetic scalar potential. An alternative
interpretation of the spherical harmonic analysis is presented: namely the determination of the
coefficients of a series representation of the magnetic vector field on a spherical surface in
orthonormal real vector spherical harmonics, which correspond to the internal and external
fields, and an additional non-potential toroidal field. The numerical values of the coefficients
of an orthonormal vector spherical harmonic series have a direct physical significance, which
is not obscured by some arbitrary normalization of the vector spherical harmonics. Therefore,
we propose a Schmidt vector normalization to be used in conjunction with the Schmidt quasi-
normalization of associated Legendre functions. A property of orthonormalized functions is
that the standard deviations of the coefficients determined by the method of least squares from
ideal data, which are uniformly accurate and uniformly globally distributed, are constant for all
coefficients. The real vector spherical harmonic analysis of the geomagnetic field is extended
to a spherical shell and conditions that restrict the radial dependence of the vector spherical
harmonic coefficients are examined. In particular, two hypotheses for the current systems
deriving from the non-potential toroidal component of the magnetic field over the surface of a
sphere are presented, namely, Earth–air currents and field-aligned currents.

Key words: geomagnetic potential, normalization, spherical harmonics, vector spherical
harmonics.

1 I N T RO D U C T I O N

In the current-free region at the surface of the Earth, magnetic fields of internal and external origin are represented by the gradients of linear
combinations of solid spherical harmonics based on associated Legendre functions of integer degree and order (see Section 2). This classical
solid spherical harmonic representation of the magnetic field of the Earth in terms of the geomagnetic scalar potential is reviewed in Section 4.
From his extensive numerical work with associated Legendre functions and their derivatives, Schmidt (1917, p. 281) proposed his normalization
of associated Legendre functions as described in Section 3. We shall refer to it as Schmidt quasi-normalization. The Proceedings of the 1939
Washington Assembly of the Association of Terrestrial Magnetism and Electricity of the International Union of Geodesy and Geophysics
(Goldie, A.H.R. & Joyce, J.W., eds, 1940) records the following resolution:

‘Normalized Spherical Harmonics.— The Association recommends that the normalized spherical harmonics of Adolf Schmidt should
be generally used in geophysical research.’

The resolution had the great merit of defining exactly what the Schmidt quasi-normalized functions are, thereby avoiding a number
of difficulties, such as those that arise when authors provide only the mean square value of their chosen functions and do not indicate the
phase factor, (−1)m . Acceptance of the IAGA resolution by the geomagnetic community has meant that the coefficients for the geomagnetic
potential derived by different researchers can be compared directly.

An additional non-potential field can be used to resolve inconsistencies between the gradient expressions for northwards and eastwards
components of the internal and external fields over the surface of the Earth. Such a non-potential field is associated with an electrical current
system, which contradicts the basic assumption of a current-free region at the surface of the Earth. Schmidt (1898) obtained spherical harmonic
coefficients for the non-potential field of the order of 10 nT, corresponding to radial current densities of the order of 1000 pA m−2. Price &
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488 D. E. Winch et al.

Chapman (1928) comment that such a result is inconsistent with the direct measurements of the atmospheric electric potential gradient and
the ionization of the air, which indicate a vertical current density of the order of 3 pA m−2. Schmidt (1939) concluded that the non-potential
field is just a consequence of remaining errors in the data. Tinsley (2000), analysing the global electric circuit, notes that the ionosphere–earth
potential difference gives rise to a vertical current density J z, which in clear weather can be measured in the range 1–4 pA m−2. Yoshida
(2001) discussed the controversy over vertical electrical currents in geomagnetic research and concluded that the non-zero values for the
vertical electrical current in ground based magnetic data generally come from the inaccurate calculation of curl H from mesh-point values.
Usually, in the analysis of surface data the non-potential field is assumed to be zero. However, for satellite magnetic data gathered in regions
in which field-aligned or other currents may be flowing, the non-potential field may be non-zero and must be included in the magnetic field
representation.

In other contexts, such as nuclear physics, for example Blatt & Weisskopf (1952), the three types of vector field (internal, external and
non-potential) over the surface of a sphere are known as vector spherical harmonics. In this paper, we develop the theory of the vector spherical
harmonic analysis of the magnetic field of the Earth in the presence of electrical currents.

Vector spherical harmonics are orthogonal and complete under integration over the surface of the sphere. Their orthogonality and
normalization are derived in Section 5 using a novel argument. Schmidt quasi-normalized coefficients determined from magnetic data are
only used for determination and representation of the internal, external and non-potential vector fields. However, vector spherical harmonic
fields corresponding to internal, external and non-potential fields, based on Schmidt normalized functions and their derivatives, although
orthogonal, are not orthonormal. In a representation of the magnetic field based on orthonormal vector fields, the numerical values of
computed coefficients do not require normalization factors. Such a representation has other advantages; for example, the magnetic energy is
the sum of the squares of the coefficients without the need for different normalization factors for each coefficient. As shown in Section 6, the
coefficients of Schmidt quasi-normalized functions, determined for internal, external and non-potential fields must therefore be multiplied
by

√
n + 1,

√
n and

√
n(n + 1)/(2n + 1), respectively, if the vector spherical harmonic fields are to be orthonormal. This renormalization

could be called Schmidt vector normalization to distinguish it from the Schmidt quasi-normalization used only for the associated Legendre
functions. The relationship of the real vector spherical harmonics to standard complex vector spherical harmonics is given in Section 7.

In Section 8, we extend the real vector spherical harmonic analysis of magnetic fields from a single spherical surface to a spherical shell
containing electrical currents. The classical spherical harmonic analysis of geomagnetic data with the assumption of curl-free magnetic flux
density and its extension to include a non-potential toroidal field must in general be further extended to include a non-potential poloidal field.
Without additional hypotheses, the radial dependence of the fields cannot be determined. We examine the no toroidal current assumption
(NTC), that there is no toroidal current system flowing in the spherical shell over which the data is being analysed, although a poloidal current
system is permitted. This poloidal current system is represented graphically by contours of an Earth–air current system, meaning contours of
the vector potential function. It is shown that the hypotheses of either a purely radial field or a field-aligned current are sufficient to determine
the radial dependence of the non-potential toroidal field. The real vector spherical harmonic representation on a sphere is given in component
form in Section 9. The effect of normalization on the standard deviations of the coefficients is discussed in Section 10.

2 F E R R E R S N O R M A L I Z AT I O N O F A S S O C I AT E D L E G E N D R E F U N C T I O N S

Associated Legendre functions Pn,m(µ) were defined by Ferrers (1877):

Pn,m(µ) = 1

2nn!
(1 − µ2)m/2

(
d

dµ

)n+m

(µ2 − 1)n, m ≤ n. (2.1)

In the case m = 0, the Ferrers associated Legendre function reduces to a Legendre polynomial, Pn (µ):

Pn,0(µ) = 1

2nn!

(
d

dµ

)n

(µ2 − 1)n = Pn(µ). (2.2)

The associated Legendre functions of (2.1), in Ferrers normalization, can also be given as

Pn,m(µ) = (1 − µ2)m/2

(
d

dµ

)m

Pn(µ). (2.3)

The parameter µ = cos θ is less than 1 when θ is the colatitude, but in some contexts, such as radial dependence in oblate spheroidal harmonics,
a function Pn,m(ir/c) is required where the argument ir/c is large and complex.

Leibnitz’s theorem for multiple derivatives of a product, can be applied to the associated Legendre function defined in (2.1), to show that

Pn,−m(µ) = (−1)m (n − m)!

(n + m)!
Pn,m(µ), m ≥ 0. (2.4)

Associated Legendre functions of the same order m,

Pm,m(µ), Pm+1,m(µ), Pm+2,m(µ), . . . ,

are orthogonal under integration with respect to µ, from µ = −1 to µ = 1:∫ 1

−1
Pn,m(µ)PN ,m(µ)dµ = 2

2n + 1

(n + m)!

(n − m)!
δN

n . (2.5)
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Geomagnetism and Schmidt quasi-normalization 489

The Kronecker delta, δN
n , is 1 when n = N and is zero otherwise. Eq. (2.5) is valid when m = 0 and

∫ 1

−1
Pn(µ)PN (µ) dµ = 2

2n + 1
δN

n . (2.6)

When trigonometric forms for dependence on longitude are used, the 2n + 1 independent surface spherical harmonics are

Pn,m(cos θ ) cos mφ, m = 0, 1, . . . , n,

Pn,m(cos θ ) sin mφ, m = 1, 2, . . . , n.
(2.7)

They are defined for positive integer values of m only and they are orthogonal under integration over the surface of a sphere. Thus, when
m �= 0 and M �= 0,

1

4π

∫ 2π

0

∫ π

0
[Pn,m(cos θ ) cos mφ][PN ,M (cos θ ) cos Mφ] sin θ dθ dφ

= 1

2

∫ π

0
[Pn,m(cos θ )PN ,M (cos θ )] sin θ dθ · 1

2π

∫ 2π

0
cos mφ cos Mφ dφ

= 1

2
· 1

2n + 1
· (n + m)!

(n − m)!
δN

n δM
m , m �= 0 and M �= 0, (2.8)

where δN
n and δM

m are Kronecker deltas. Similarly,

1

4π

∫ 2π

0

∫ π

0
[Pn,m(cos θ ) sin mφ][PN ,M (cos θ ) sin Mφ] sin θ dθ dφ

= 1

2
· 1

2n + 1
· (n + m)!

(n − m)!
δN

n δM
m , m �= 0 and M �= 0. (2.9)

In the special case when m = 0 and M = 0 (excluded from eq. 2.8), then, from eqs (2.2) and (2.6), the product integral (2.8) reduces to the
orthogonality of the Legendre polynomials:

1

4π

∫ 2π

0

∫ π

0
[Pn,0(cos θ )PN ,0(cos θ )] sin θ dθ dφ = 1

2n + 1
δN

n . (2.10)

Also, for all m and M , integration with respect to φ gives

1

4π

∫ 2π

0

∫ π

0
[Pn,m(cos θ ) sin mφ][PN ,M (cos θ ) cos Mφ] sin θ dθ dφ = 0. (2.11)

Therefore, given a function f (θ , φ) over the surface of sphere, to be represented as a sum of surface spherical harmonics, with Ferrers
normalization, we write

f (θ, φ) =
N∑

n=1

n∑
m=0

(an,m cos mφ + bn,m sin mφ)Pn,m(cos θ ), (2.12)

where the coefficients an,m and bn,m are determined by integration, or estimated by a numerical approximation to the integration, by

an,m = 2(2n + 1)

4π

(n − m)!

(n + m)!

∫ 2π

0

∫ π

0
f (θ, φ)Pn,m(cos θ ) cos mφ sin θ dθ dφ,

bn,m = 2(2n + 1)

4π

(n − m)!

(n + m)!

∫ 2π

0

∫ π

0
f (θ, φ)Pn,m(cos θ ) sin mφ sin θ dθ dφ,

an,0 = (2n + 1)
∫ π

0
f (θ, φ)Pn,0(cos θ ) sin θ dθ, bn,0 = 0. (2.13)

From eq. (2.5) with n = N it can be seen that the root-mean-square amplitudes of the Ferrers normalized functions vary wildly from
√

2/(2n + 1)
for Pn,0 to

√
2(2n)!/(2n + 1) for Pn,n . Ferrers normalized functions are therefore unsuitable for numerical work, producing coefficients an,m and

bn,m , which have a wide range of numerical values depending on degree n and order m resulting entirely from the mathematical normalization
of the associated Legendre functions. Schmidt quasi-normalization of associated Legendre functions was introduced in order that all such
functions had the same normalization as the Legendre polynomials. This damped down the variations of numerical coefficients an,m and
bn,m required when representing scalar functions f (θ , φ). However, as will be shown below, when Schmidt quasi-normalization is used in
representations of vector functions, an extra factor must be applied, depending on whether the vector is of the internal, external or non-potential
type. This does not require a renormalization of the associated Legendre function; rather, it is an extra factor, which is different for the three
different types of field. It will be referred to here as Schmidt vector normalization.

C© 2004 RAS, GJI, 160, 487–504

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/160/2/487/659348 by guest on 05 M

arch 2024
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3 S C H M I D T Q UA S I - N O R M A L I Z AT I O N O F S U R FA C E S P H E R I C A L H A R M O N I C S

In an encyclopedia article on geomagnetism, Schmidt (1917, p. 281) defined what are now called Schmidt quasi-normalized functions,
Pm

n (cos θ ):

P0
n (µ) = 1

2nn!

(
d

dµ

)n

(µ2 − 1)n ≡ Pn(µ)

and, when m �= 0,

Pm
n (µ) =

√
2

(n − m)!

(n + m)!
Pn,m(µ)

=
√

2
(n − m)!

(n + m)!
(1 − µ2)m/2

(
d

dµ

)m

Pn(µ).




(3.1)

The expressions for Schmidt quasi-normalized functions given in eq. (3.1) can be written as one expression valid for m, such that
|m|≤ n, as

Pm
n (µ) =

√(
2 − δ0

m

) (n − m)!

(n + m)!
Pn,m(µ), |m| ≤ n. (3.2)

Schmidt further defined real surface spherical harmonics, Cm
n (θ , φ) and Sm

n (θ , φ):

Cm
n (θ, φ) = Pm

n (cos θ ) cos mφ, for m = 0, 1, 2, . . . , n,

Sm
n (θ, φ) = Pm

n (cos θ ) sin mφ, for m = 1, 2, . . . , n.

(3.3)

The Schmidt quasi-normalized functions Pm
n (cos θ ), as defined in eq. (3.2), are intended for use only with trigonometric dependence on

east longitude φ, in the form of surface spherical harmonics, Cm
n (θ , φ) and Sm

n (θ , φ), and for this reason the additional factor of 2 (not used in
the Ferrers normalization) is included under the square root sign in the definition of Pm

n (µ) in eq. (3.1). In place of eqs (2.8)–(2.11) we now
have, when m �= 0 and M �= 0,

1

4π

∫ 2π

0

∫ π

0
Cm

n (θ, φ)C M
N (θ, φ) sin θ dθ dφ = 1

2n + 1
δN

n δM
m , (3.4)

1

4π

∫ 2π

0

∫ π

0
Sm

n (θ, φ)SM
N (θ, φ) sin θ dθ dφ = 1

2n + 1
δN

n δM
m , (3.5)

1

4π

∫ 2π

0

∫ π

0
Cm

n (θ, φ)SM
N (θ, φ) sin θ dθ dφ = 0, all n, N , m and M. (3.6)

When m = M = 0, eq. (3.4) reduces to the form given in eq. (2.10).
Eqs (2.10), (3.4), (3.5) and (3.6) show that the 2n + 1 Schmidt quasi-normalized surface spherical harmonics of degree n have the same

mean square value, namely 1/(2n + 1), over the surface of a sphere as the Legendre polynomial of degree n. The functions, and therefore the
computed numerical coefficients of these functions, will be independent of order m, but will depend upon degree n.

Therefore, if a function f (θ , φ) is to be represented as a linear combination of Schmidt quasi-normalized functions,

f (θ, φ) =
N∑

n=1

n∑
m=0

(
am

n cos mφ + bm
n sin mφ

)
Pm

n (cos θ )

=
N∑

n=1

n∑
m=0

[
am

n Cm
n (θ, φ) + bm

n Sm
n (θ, φ)

]
, (3.7)

then the linear combination coefficients are given by

am
n = (2n + 1)

1

4π

∫ 2π

0

∫ π

0
f (θ, φ)Pm

n (cos θ ) cos mφ sin θ dθ dφ,

bm
n = (2n + 1)

1

4π

∫ 2π

0

∫ π

0
f (θ, φ)Pm

n (cos θ ) sin mφ sin θ dθ dφ,

a0
n = (2n + 1)

∫ π

0
f (θ, φ) sin θ dθ, b0

n = 0.

(3.8)

In earlier work, Schmidt made use of fully normalized functions in surface spherical harmonics, which he denoted Rm
n (θ , φ), but decided

against their use in favour of the normalization given in eq. (3.1). No reason was given, but one could surmise that Schmidt quasi-normalized
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Geomagnetism and Schmidt quasi-normalization 491

functions kept the values required for the radial component of the field, which has a factor (n + 1), in a range better suited to numerical work
done using logarithms.

4 G AU S S – S C H M I D T A N A LY S I S A N D S O L I D S P H E R I C A L H A R M O N I C S

The Gauss theory of the mathematical analysis of the magnetic field of the Earth and its variations is given here, with Schmidt’s name appended
because of his researches on the non-potential field, which is represented in terms of Earth–air currents, in the same way that the potential
fields are interpreted in terms of equivalent, toroidal, current systems.

The magnetic flux density B has no divergence and is therefore described as solenoidal. By Ampère’s law,

∇ × H + ∂ D

∂t
= J, (4.1)

and in the absence of the displacement current ∂ D/∂t and of electrical current density J, the magnetic field strength H is curl-free, ∇ ×
H = 0, and H is represented by the gradient of a scalar potential, H = −∇V . In a region of uniform magnetic susceptibility, µ, the magnetic
flux density B = µH and therefore B is curl-free, ∇× B = 0, and hence, B can be represented by the gradient of a potential function,
B = −µ∇V .

For the magnetic flux density B to satisfy ∇· B = 0, the potential V to be used in the analysis of magnetic field components must satisfy
Laplace’s equation, for which reason it is said to be harmonic. Solution of Laplace’s equation in spherical polars leads to solid spherical
harmonics with radial dependence 1/rn+1,

1

rn+1
Pm

n (cos θ ) cos mφ,
1

rn+1
Pm

n (cos θ ) sin mφ, (4.2)

and with radial dependence rn,

rn Pm
n (cos θ ) cos mφ, rn Pm

n (cos θ ) sin mφ. (4.3)

Series of solid spherical harmonics (4.2) are appropriate in regions that exclude the origin, r = 0, and are used to represent the magnetic
field potential outside a reference sphere, often chosen to be the sphere of minimum radius enclosing the sources. Therefore, they are associated
with magnetic fields of internal origin. Similarly, series of solid spherical harmonics (4.3) are appropriate inside a reference sphere and are
associated with external magnetic fields whose origin is outside the reference sphere.

Relative to a reference sphere of radius a, the expression used for the potential of magnetic field of internal origin is

Vi (r, θ, φ) = a
N∑

n=1

(
a

r

)n+1 n∑
m=0

(
gm

ni cos mφ + hm
ni sin mφ

)
Pm

n (cos θ ), r ≥ a,

= a
N∑

n=1

(
a

r

)n+1 n∑
m=0

[
gm

ni C
m
m (θ, φ) + hm

ni Sm
n (θ, φ)

]
, r ≥ a. (4.4)

The initial factor a in eq. (4.4) is chosen so that the coefficients gm
ni and hm

ni will have units of magnetic flux density, teslas. In geomagnetism, the
relevant value of a is the mean radius of the Earth, 6371 km. Following the IAGA resolution (Goldie & Joyce 1940), the associated Legendre
functions Pm

n (cos θ ) cos mφ and Pm
n (cos θ ) sin mφ are Schmidt quasi-normalized functions. The geomagnetic field of internal origin will be

denoted by Bi (r , θ , φ) and

Bi (r, θ, φ) = −∇Vi (r, θ, φ)

= −∂Vi

∂r
er − 1

r

∂Vi

∂θ
eθ − 1

r sin θ

∂Vi

∂φ
eφ,

(4.5)

in which er , eθ , eφ are unit vectors in spherical polars, being in the direction of gradients of coordinates, namely ∇r , ∇θ , ∇φ. The corresponding
vector field in the region r ≥ a is

Bi (r, θ, φ) =
N∑

n=1

(
a

r

)n+2 n∑
m=0

[
gm

ni G
m
ni (θ, φ) + hm

ni Hm
ni (θ, φ)

]
Pm

n (cos θ ), r ≥ a (4.6)

and, over the sphere r = a, the internal field reduces to

Bi (a, θ, φ) =
N∑

n=1

n∑
m=0

[
gm

ni G
m
ni (θ, φ) + hm

ni Hm
ni (θ, φ)

]
, (4.7)

where the spherical polar components of the internal vector harmonics Gm
ni (θ , φ) and Hm

ni (θ , φ) are

Gm
ni (θ, φ) = (n + 1)Pm

n cos mφer − d Pm
n

dθ
cos mφeθ + m

sin θ
Pm

n sin mφ eφ,

Hm
ni (θ, φ) = (n + 1)Pm

n sin mφer − d Pm
n

dθ
sin mφeθ − m

sin θ
Pm

n cos mφ eφ. (4.8)

Eq. (4.7) is the basis for the statement that the coefficients gm
ni and hm

ni are applied to the vector fields Gm
ni (θ , φ) and Hm

ni (θ , φ), respectively,
and it is therefore appropriate that these vector fields should be normalized to have a unit mean square value over the surface of the sphere.
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492 D. E. Winch et al.

The use of the scalar components of eq. (4.8) in numerical analyses may give the impression that the coefficients of a scalar potential are
being sought.

Similarly, the field of external origin is denoted by Be(r , θ , φ), where

Be(r, θ, φ) = −∇Ve(r, θ, φ)

= −∂Ve

∂r
er − 1

r

∂Ve

∂θ
eθ − 1

r sin θ

∂Ve

∂φ
e

φ
. (4.9)

The field of external origin is an essential part of the analysis of magnetic daily variations and disturbances and it is convenient to assume that
it is valid within a sphere of radius b, representing the lower limit of the ionosphere or magnetosphere, where b > a. The magnetic potential
V e (r , θ , φ) for vector fields of external origin is a linear combination of solid spherical harmonics as in eq. (4.3):

Ve(r, θ, φ) = b
N∑

n=1

(
r

b

)n n∑
m=0

[
gm

ne cos mφ + hm
ne sin mφ

]
Pm

n (cos θ ), r ≤ b

= b
N∑

n=1

(
r

b

)n n∑
m=0

[
gm

neCm
n (θ, φ) + hm

ne Sm
n (θ, φ)

]
, r ≤ b. (4.10)

The external field Be(r , θ , φ) = −∇V e (r , θ , φ), in the region r ≤ b is

Be(r, θ, φ) =
N∑

n=1

(
r

b

)n−1 n∑
m=0

[
gm

neGm
ne(θ, φ) + hm

ne Hm
ne(θ, φ)

]
(4.11)

and, at the surface of the sphere r = a, the external field is

Be(a, θ, φ) =
N∑

n=1

(
a

b

)n−1 n∑
m=0

[
gm

neGm
ne(θ, φ) + hm

ne Hm
ne(θ, φ)

]
. (4.12)

It is the standard practice to use the expression

Be(a, θ, φ) =
N∑

n=1

n∑
m=0

[
gm

neGm
ne(θ, φ) + hm

ne Hm
ne(θ, φ)

]
(4.13)

in place of eq. (4.12) and to apply the factor ( b
a )n−1 to the computed coefficients at the conclusion of the calculation, as part of the determination

of an equivalent current function, meaning an equivalent toroidal current system. The spherical polar components of the external vector spherical
harmonics, Gm

ne(θ , φ) and Hm
ne(θ , φ), are

Gm
ne(θ, φ) = −n Pm

n cos mφ er − d Pm
n

dθ
cos mφ eθ + m

sin θ
Pm

n sin mφ eφ,

Hm
ne(θ, φ) = −n Pm

n sin mφ er − d Pm
n

dθ
sin mφ eθ − m

sin θ
Pm

n cos mφ eφ. (4.14)

Therefore the coefficients gm
ne and hm

ne are applied to the vector fields Gm
ne(θ , φ) and Hm

ne(θ , φ), respectively, and it is appropriate that these
vector fields should be normalized to have a unit mean square value over the surface of the unit sphere.

The representation of the main magnetic field of the Earth, its daily variations and its disturbance variations in terms of fields of internal
and external origin using solid spherical harmonic functions was extended by Schmidt (1898) to include a non-potential field. The purpose of
the non-potential field is to represent any stream-function part of the magnetic field over the surface of a sphere that cannot be represented as
the gradient of a scalar potential. The three fields (internal, external and non-potential), over the surface of a sphere, correspond to the three
types of vector spherical harmonics, orthogonal under integration over the surface of a sphere (see Section 5).

The eθ components in eqs (4.8) and (4.14), of Gm
ni and Gm

ne (and of Hm
ni and Hm

ne), have the same mathematical coefficients and, similarly,
the same eφ components. Therefore, these vector fields cannot deal with the case where the horizontal field components are not represented
entirely by the gradients of scalar potentials. To deal with this problem, Schmidt (1917, p. 281) suggested using a non-potential field, Bv (r ,
θ , φ), which has a vector potential, rVv(r, θ, φ). Thus,

Bv(r, θ, φ) = 1

sin θ

∂Vv

∂φ
eθ − ∂Vv

∂θ
eφ

= −r × ∇Vv(r, θ, φ)

= ∇ × [r Vv(r, θ, φ)] . (4.15)

For the sake of simplicity in the next few equations, we consider the function V v (r , θ , φ) with just a single term:

Vv(r, θ, φ) = gm
nv

qm
n (r )

qm
n (a)

Pm
n (cos θ ) cos mφ,

Bv(r, θ, φ) = gm
nv

qm
n (r )

qm
n (a)

[
− m

sin θ
Pm

n (cos θ ) sin mφeθ − d Pm
n

dθ
cos mφeφ

]
. (4.16)
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Geomagnetism and Schmidt quasi-normalization 493

From Bv (r , θ , φ) in the curl form (4.15), it will be clear that the divergence, ∇·Bv(r , θ , φ), is zero, regardless of the expression used for the
radial dependence qm

n (r ) of V v(r , θ , φ). The associated current system is, say Jv(r, θ, φ), where

Jv(r, θ, φ) = 1

µ0
∇ × Bv(r, θ, φ)

= gm
nv

µ0rqm
n (a)

{
er qm

n (r )n(n + 1)Pm
n (cos θ ) cos mφ + d

dr

[
rqm

n (r )
] (

eθ

∂

∂θ
+ eφ

sin θ

∂

∂φ

)
Pm

n (cos θ ) cos mφ

}
. (4.17)

One is free to choose whatever expression is relevant for qm
n (r ). The choice

qm
n (r ) = 1

r
(4.18)

leads to the radial current system, often called Earth–air, in which exactly half of the current will flow in the reverse direction from the air to
Earth. Therefore, over the reference sphere r = a, eq. (4.17) reduces to

Jv(r, θ, φ) = gm
nv

µ0a
n(n + 1)Pm

n (cos θ ) cos mφ er . (4.19)

Noting that the permeability of free space µ0 is 4π × 10−7 henrys per metre, where the unit of inductance, the henry, is one weber per ampere,
the unit of magnetic flux density, the tesla, is one weber per square metre and the mean radius of the Earth is a = 6371000 m, the radial current
density Jv(r , θ , φ) is

Jv(r, θ, φ) = 10000

80060
n(n + 1)

(
gm

nv

)
teslas

Pm
n (cos θ ) cos mφ, A m−2. (4.20)

Now

1A m−2 = 106 A km−2 = 1012 pA m−2,

and, therefore,

Jv(r, θ, φ) = 10000

80060
× 103n(n + 1)

(
gm

nv

)
nT

Pm
n (cos θ ) cos mφ, pA m−2

= 124.9n(n + 1)
(
gm

nv

)
nT

Pm
n (cos θ ) cos mφ, pA m−2. (4.21)

Therefore the figure of 1–4 pA m−2, quoted by Tinsley (2000) for the global electric circuit is at least 2 orders of magnitude less than
the current that would derive from a non-potential field of some tens of nanoteslas. The global electric circuit current cannot be distinguished
from random noise using geomagnetic data. One is free to choose other expressions for qm

n (r ) that will lead to non-potential fields coming
from poloidal current systems that have both radial and horizontal components.

For the function V v(r , θ , φ), it is convenient to use

Vv(r, θ, φ) =
N∑

n=1

n∑
m=0

[
gm

nv(r ) cos mφ + hm
nv(r ) sin mφ

]
Pm

n (cos θ )

=
N∑

n=1

n∑
m=0

[
gm

nv(r )Cm
n (θ, φ) + hm

nv(r )Sm
n (θ, φ)

]
. (4.22)

As shown in eq. (4.15), the condition that the magnetic flux density B has no divergence does not place any restriction on the radial
functions gm

nv(r ) and hm
nv(r ). The non-potential field Bv(r , θ , φ) is

Bv(r, θ, φ) =
N∑

n=1

n∑
m=0

[
gm

nv(r )Gm
nv(θ, φ) + hm

nv(r )Hm
nv(θ, φ)

]
, (4.23)

where the vector fields Gm
nv(θ , φ) and Hm

nv(θ , φ) have spherical polar components

Gm
nv(θ, φ) = − m

sin θ
Pm

n sin mφ eθ − d Pm
n

dθ
cos mφ eφ,

Hm
nv(θ, φ) = m

sin θ
Pm

n cos mφ eθ − d Pm
n

dθ
sin mφ eφ. (4.24)

Over the surface of a sphere r = a, with gm
nv (a) = gm

nv and hm
nv (a) = hm

nv , the non-potential field is

Bv(a, θ, φ) =
N∑

n=1

n∑
m=0

[
gm

nvGm
nv(θ, φ) + hm

nv Hm
nv(θ, φ)

]
, (4.25)

The coefficients gm
nv and hm

nv are applied to the vector fields Gm
nv(θ , φ) and Hm

nv(θ , φ), respectively, and it is appropriate that these vector
fields should be normalized to have unit mean square values over the surface of a unit sphere.

This non-potential field is a toroidal field. Because a poloidal field can also be a non-potential field, in order to be precise, we will refer
to the non-potential field of eq. (4.25) as the non-potential toroidal field and use this nomenclature in the following sections.

The equations above describe the theoretical basis for the spherical harmonic analysis of the geomagnetic main field and daily variation
field. The radial dependence of the internal and external fields is given in eqs (4.6) and (4.11).
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494 D. E. Winch et al.

When the non-potential toroidal field is included, the assumption of a current-free region (used to derive radial dependence of internal
and external fields from gradients of a potential function) may be replaced by the assumption that no toroidal current system flows over the
surface for which the data is available. This may not be true for satellite magnetic data, gathered in the region between the ionosphere and the
magnetopause.

A further consideration arises with satellite magnetic data, especially if the orbit is non-spherical or it is supplemented by other data,
e.g. observatory data. The magnetic field representation must be valid for the volume of a spherical shell, not just a spherical surface. In the
following, we develop the representation and analysis of the magnetic field in terms of real vector spherical harmonics and investigate the
radial dependence under various assumptions.

5 O RT H O G O N A L I T Y O F V E C T O R S P H E R I C A L H A R M O N I C S

5.1 First surface integrals

To derive the orthogonality properties of vector spherical harmonics, two different sets of surface integrals are required. For the first set, we
commence with the vector A1(θ , φ) given by

A1(θ, φ) = C(θ, φ)∇ D(θ, φ), (5.1)

where{
C(θ, φ) = Pm

n (cos θ ) cos mφ,

D(θ, φ) = P M
N (cos θ ) cos Mφ.

(5.2)

The Laplacian of D(θ , φ) is

∇2 D(θ, φ) = −N (N + 1)P M
N (cos θ ) cos Mφ. (5.3)

The vector A1(θ , φ) is therefore

A1(θ, φ) = Pm
n (cos θ ) cos mφ∇ [

P M
N (cos θ ) cos Mφ

]
= 1

r
Pm

n (cos θ ) cos mφ

[
d P M

N

dθ
cos Mφ eθ − M

sin θ
P M

N (cos θ ) sin Mφ eφ

]
(5.4)

and it has no radial component.
The divergence of A1(θ , φ) is obtained using

∇ · (C∇ D) = ∇C · ∇ D + C∇2 D, (5.5)

so that

∇ · A1 = 1

r 2

[
d Pm

n

dθ

d P M
N

dθ
cos mφ cos Mφ + mM

sin2 θ
Pm

n P M
N sin mφ sin Mφ − N (N + 1)Pm

n P M
N cos mφ cos Mφ

]
.

(5.6)

Gauss’s theorem for the integration of ∇· A1 throughout a closed sphere is∫∫∫
closed
sphere

(∇ · A1) dv =
∫∫

spherical
surface

A1 · d S, (5.7)

in which d S is parallel to the unit radius vector and is normal to the spherical surface. The vector A1(θ , φ) defined in eq. (5.1) has no radial
component and, therefore, the spherical surface integral on the right of eq. (5.7) is zero and eq. (5.7) reduces to∫∫∫
closed
sphere

(∇ · A1) dv = 0. (5.8)

Because the element of volume dv = r 2 sin θ dθ dφ in spherical polars and because of the factor 1/r 2 in ∇· A1, in eq. (5.6), the integration
with respect to r in the volume integral in eq. (5.8) reduces to

∫ R
0 dr = R. From eqs (5.6) and (5.8),

1

4π

∫ ∫ [
−N (N + 1)Pm

n P M
N cos mφ cos Mφ + d Pm

n

dθ

d P M
N

dθ
cos mφ cos Mφ + mM

sin2 θ
Pm

n P M
N sin mφ sin Mφ

]
sin θ dθ dφ = 0, (5.9)

where the integration is over the complete spherical surface.
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Geomagnetism and Schmidt quasi-normalization 495

There appears to be a singularity at the poles, θ = 0 and θ = π , in the surface integral in eq. (5.9), because of the factor 1/sin θ in the
integrand of

1

4π

∫ ∫ (
mM

sin θ
Pm

n P M
N sin mφ sin Mφ

)
dφ dφ. (5.10)

The surface integral (5.10) is zero when either m = 0 or M = 0 and in the other cases, m ≥ 1 and M ≥ 1, the functions Pm
n (cos θ ) and

PM
N (cos θ ) have factors sinmθ and sinMθ , respectively, which effectively remove the apparent singularity due to the factor 1/sin θ .

From eq. (5.9), and from the orthogonality of Schmidt normalized surface spherical harmonics in eq. (3.4),

1

4π

∫∫ (
d Pm

n

dθ

d P M
N

dθ
cos mφ cos Mφ + mM

sin2 θ
Pm

n P M
N sin mφ sin Mφ

)
sin θ dθ dφ

= N (N + 1)
1

4π

∫∫
Pm

n P M
N cos mφ cos Mφ sin θ dθ dφ,

= n(n + 1)

2n + 1
δN

n δM
m . (5.11)

5.2 Second surface integral

To derive the second set of surface integrals, we commence with a vector A2(θ , φ) defined by

A2 (θ, φ) = ∇ × [C(θ, φ)∇ D(θ, φ)]

= ∇C(θ, φ) × ∇ D(θ, φ)

= er

r 2 sin θ

(
∂C

∂θ

∂ D

∂φ
− ∂C

∂φ

∂ D

∂θ

)
. (5.12)

Using{
C(θ, φ) = Pm

n (cos θ ) cos mφ,

D(θ, φ) = P M
N (cos θ ) sin Mφ,

(5.13)

the vector A2(θ , φ) is therefore

A2(θ, φ) = er

r 2 sin θ

(
M

d Pm
n

dθ
P M

N cos mφ cos Mφ + m Pm
n

d P M
N

dθ
sin mφ sin Mφ

)
(5.14)

and from the curl form in eq. (5.12), A2(θ , φ) has no divergence:

∇ · A2 = 0. (5.15)

In contrast to the vector A1(θ , φ) of eq. (5.4), which has no radial component and a non-zero divergence, the vector A2(θ , φ) therefore has
only a radial component and has no divergence.

Gauss’s theorem (5.7), using A2(θ , φ), reduces to∫∫
spherical
surface

A2 · d S = 0, (5.16)

giving directly that

1

4π

∫∫ (
M

d Pm
n

dθ
P M

N cos mφ cos Mφ + m Pm
n

d P M
N

dθ
sin mφ sin Mφ

)
dθ dφ = 0. (5.17)

5.3 Orthogonalities within type of vector spherical harmonics

Vector fields Gm
ni , Hm

ni are defined in eq. (4.8). Vector fields Gm
ne, Hm

ne are defined in eq. (4.14). Vector fields Gm
nv, Hm

nv are defined in
eq. (4.24).

Note that integrals of some scalar products of G and H components of the internal field will be zero on integration over the entire
spherical surface simply by integration with respect to φ. Thus,

1

4π

∫∫
Gm

ni (θ, φ) · HM
Ni (θ, φ) sin θ dθ dφ = 0, (5.18)

1

4π

∫∫
Gm

ne(θ, φ) · HM
Ne(θ, φ) sin θ dθ dφ = 0 (5.19)

and
1

4π

∫∫
Gm

nv(θ, φ) · HM
Nv(θ, φ) sin θ dθ dφ = 0. (5.20)
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496 D. E. Winch et al.

By eq. (5.11), the Gm
ni (θ , φ) internal field vectors are orthogonal,

1

4π

∫ 2π

0

∫ π

0
Gm

ni (θ, φ) · G M
Ni (θ, φ) sin θ dθ dφ =

[
(n + 1)2

2n + 1
+ n(n + 1)

2n + 1

]
δN

n δM
m

= (n + 1)δN
n δM

m ,

with a corresponding result for the Hm
ni (θ , φ) components of the internal field

1

4π

∫ 2π

0

∫ π

0
Hm

ni (θ, φ) · HM
Ni (θ, φ) sin θ dθ dφ = (n + 1)δN

n δM
m . (5.21)

Also, by eq. (5.11), the Gm
ne(θ , φ) external field vectors are orthogonal,

1

4π

∫ 2π

0

∫ π

0
Gm

ne(θ, φ) · G M
Ne(θ, φ) sin θ dθ dφ =

[
n2

2n + 1
+ n(n + 1)

2n + 1

]
δN

n δM
m

= nδN
n δM

m ,

with a corresponding result for the Hm
ne(θ , φ) components of the external field

1

4π

∫ 2π

0

∫ π

0
Hm

ne(θ, φ) · HM
Ne(θ, φ) sin θ dθ dφ = nδN

n δM
m . (5.22)

By eq. (5.11), the Gm
nv(θ , φ) components of the non-potential toroidal field are orthogonal,

1

4π

∫ 2π

0

∫ π

0
Gm

nv(θ, φ) · G M
Nv(θ, φ) sin θ dθ dφ = n(n + 1)

2n + 1
δN

n δM
m ,

with a corresponding result for the Hm
nv(θ , φ) components of the non-potential toroidal field,

1

4π

∫ 2π

0

∫ π

0
Hm

nv(θ, φ) · HM
Nv(θ, φ) sin θ dθ dφ = n(n + 1)

2n + 1
δN

n δM
m . (5.23)

From eqs (5.21), (5.22) and (5.23), respectively, the mean square values of the internal, external and non-potential toroidal fields are

1

4π

∫ 2π

0

∫ π

0

[
Gm

ni (θ, φ)
]2

sin θ dθ dφ = (n + 1),
1

4π

∫ 2π

0

∫ π

0

[
Hm

ni (θ, φ)
]2

sin θ dθ dφ = (n + 1), (5.24)

1

4π

∫ 2π

0

∫ π

0

[
Gm

ne(θ, φ)
]2

sin θ dθ dφ = n,
1

4π

∫ 2π

0

∫ π

0

[
Hm

ne(θ, φ)
]2

sin θ dθ dφ = n, (5.25)

1

4π

∫ 2π

0

∫ π

0

[
Gm

nv(θ, φ)
]2

sin θ dθ dφ = n(n + 1)

2n + 1
,

1

4π

∫ 2π

0

∫ π

0

[
Hm

nv(θ, φ)
]2

sin θ dθ dφ = n(n + 1)

2n + 1
. (5.26)

The result (5.24) is used in deriving the Lowes–Mauersberger spectrum, (Lowes 1966).

5.4 Orthogonalities between types of vector spherical harmonic

The three different types of G field are orthogonal within their own type but also between types. Thus from eq. (5.9), or by eq. (5.17) or by
the orthogonality of the trigonometric functions on integration with respect to φ from 0 to 2π :
internal and external fields,

1

4π

∫ 2π

0

∫ π

0
Gm

ni (θ, φ) · G M
Ne(θ, φ) sin θ dθ dφ = 0,

1

4π

∫ 2π

0

∫ π

0
Gm

ni (θ, φ) · HM
Ne(θ, φ) sin θ dθ dφ = 0,

1

4π

∫ 2π

0

∫ π

0
Hm

ni (θ, φ) · G M
Ne(θ, φ) sin θ dθ dφ = 0,

1

4π

∫ 2π

0

∫ π

0
Hm

ni (θ, φ) · HM
Ne(θ, φ) sin θ dθ dφ = 0;

internal and non-potential fields,

1

4π

∫ 2π

0

∫ π

0
Gm

ni (θ, φ) · G M
Nv(θ, φ) sin θ dθ dφ = 0,

1

4π

∫ 2π

0

∫ π

0
Gm

ni (θ, φ) · HM
Nv(θ, φ) sin θ dθ dφ = 0,

1

4π

∫ 2π

0

∫ π

0
Hm

ni (θ, φ) · G M
Nv(θ, φ) sin θ dθ dφ = 0,

1

4π

∫ 2π

0

∫ π

0
Hm

ni (θ, φ) · HM
Nv(θ, φ) sin θ dθ dφ = 0;

external and non-potential fields,

1

4π

∫ 2π

0

∫ π

0
Gm

ne(θ, φ) · G M
Nv(θ, φ) sin θ dθ dφ = 0,

1

4π

∫ 2π

0

∫ π

0
Gm

ne(θ, φ) · HM
Nv(θ, φ) sin θ dθ dφ = 0,

1

4π

∫ 2π

0

∫ π

0
Hm

ne(θ, φ) · G M
Nv(θ, φ) sin θ dθ dφ = 0,

1

4π

∫ 2π

0

∫ π

0
Hm

ne(θ, φ) · HM
Nv(θ, φ) sin θ dθ dφ = 0.
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Geomagnetism and Schmidt quasi-normalization 497

Therefore, any finite linear combination of internal vector fields Gm
ni (θ , φ) and Hm

ni (θ , φ) is orthogonal to any finite linear combination
of external vector fields Gm

ne(θ , φ) and Hm
ne(θ , φ), under integration over the surface of a sphere.

6 O RT H O N O R M A L V E C T O R S P H E R I C A L H A R M O N I C S

From eqs (5.24), (5.25) and (5.26) of the previous section, fully normalized vector fields with unit mean square value are

1√
n + 1

Gm
ni and

1√
n + 1

Hm
ni ,

1√
n

Gm
ne and

1√
n

Hm
ne,√

2n + 1

n(n + 1)
Gm

ne and

√
2n + 1

n(n + 1)
Hm

nv.
(6.1)

From eqs (4.6) and (6.1), we may write the internal part of the main field as

Bi (r, θ, φ) =
N∑

n=1

(
a

r

)n+2 n∑
m=0

[(√
n + 1 gm

ni

) Gm
ni (θ, φ)√
n + 1

+ (√
n + 1 hm

ni

) Hm
ni (θ, φ)√
n + 1

]
,

showing that for work with orthonormalized vector fields:

(i) internal field coefficients, gm
ni, hm

ni, determined using Schmidt quasi-normalized scalar functions should be multiplied by
√

n + 1; similarly
(ii) external field coefficients, gm

ne, hm
ne, should be multiplied by

√
n; and

(iii) non-potential toroidal field coefficients, gm
nv , hm

nv , should be multiplied by
√

n(n + 1)/(2n + 1).

7 C O M P L E X V E C T O R S P H E R I C A L H A R M O N I C S

The orthogonality of the internal, external and non-potential fields under integration over the surface of a sphere is not often used directly
in spherical harmonic analyses of the magnetic field of the Earth or its variations, but the orthogonality of the equivalent vector spherical
harmonics is well known in the theory of the rotation group in three dimensions. Studies of vector spherical harmonics are usually given in
terms of complex surface spherical harmonics, Y m

n (θ , φ), complex reference vectors, e1, e0, e−1, and particular recurrence relations for surface
spherical harmonics using 3 − j vector coupling coefficients, e.g. James (1976). In this paper, we give the analysis in terms of real variables
only, with trigonometric expressions for dependence on longitude, because real variable expressions will be more familiar to those to whom
this research is directed.

In terms of the Ferrers normalized functions (2.1), the complex variable form Y m
n (θ , φ) of the surface spherical harmonic is

Y m
n (θ, φ) = (−1)m

√
(2n + 1)

(n − m)!

(n + m)!
Pn,m(cos θ )eimφ, (7.1)

where a phase factor (−1)m is included, following Condon & Shortley (1967). In terms of Schmidt normalized functions,

Y m
n (θ, φ) = (−1)m

√
2n + 1

2 − δ0
m

Pm
n (cos θ )eimφ. (7.2)

Complex vector spherical harmonics are defined as follows, Blatt & Weisskopf (1952):

Ym
n,n+1(θ, φ) = 1√

(n + 1)(2n + 1)
rn+2∇

[
1

rn+1
Y m

n (θ, φ)

]
,

Ym
n,n(θ, φ) = − i√

n(n + 1)
r × ∇Y m

n (θ, φ),

Ym
n,n−1(θ, φ) = 1√

n(2n + 1)

1

rn−1
∇ [

rnY m
n (θ, φ)

]
. (7.3)

The vector spherical harmonics Ym
n,n+1(θ , φ), Ym

n,n(θ , φ) and Ym
n,n−1(θ , φ) under rotation of the reference frame transform like the scalar

surface spherical harmonics Y m
n+1(θ , φ), Y m

n (θ , φ) and Y m
n−1(θ , φ), respectively, but are derived from Y m

n (θ , φ). Their properties of orthogonality
and completeness follow directly from the manner of their construction.

From eqs (4.8), (4.14) and (4.24) using Schmidt-normalized functions Pm
n (cos θ ),

Gm
ni (θ, φ) + i Hm

ni (θ, φ) = −rn+2∇
[

1

rn+1
Pm

n (cos θ )eimφ

]
,

Gm
ne(θ, φ) + i Hm

ne(θ, φ) = − 1

rn−1
∇ [

rn Pm
n (cos θ )eimφ

]
,

Gm
nv(θ, φ) + i Hm

nv(θ, φ) = −r × ∇ [
Pm

n (cos θ )eimφ
]
. (7.4)
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Therefore, from eqs (7.3) and (7.4), using eq. (7.2),

Gm
ni (θ, φ) + i Hm

ni (θ, φ) = (−1)m+1
√

(2 − δ0
m)(n + 1) Ym

n,n+1(θ, φ),

Gm
ne(θ, φ) + i Hm

ne(θ, φ) = (−1)m+1
√

(2 − δ0
m)n Ym

n,n−1(θ, φ),

Gm
nv(θ, φ) + i Hm

nv(θ, φ) = (−1)m+1

√
(2 − δ0

m)
n(n + 1)

2n + 1
iYm

n,n(θ, φ).
(7.5)

Therefore, Gauss–Schmidt analysis of geomagnetic data over the surface of a sphere is, in fact, analysis by means of vector spherical
harmonics.

8 R A D I A L D E P E N D E N C E

The standard Gauss–Schmidt analysis of geomagnetic data over the surface of a reference sphere has been given in Section 4, and the
orthogonality of the internal, external and non-potential toroidal fields under integration over the surface of the reference sphere established in
Section 5. In Sections 6 and 7, it has been shown that the Gauss–Schmidt analysis of magnetic data over the surface of a sphere is equivalent
to a representation of the magnetic field by means of orthonormal vector spherical harmonics.

For the analysis of data throughout a spherical shell, the radial dependence of the vector spherical harmonic coefficients in the magnetic
field representation has to be determined subject to the basic assumption that the vector field has no divergence. Full determination of the
radial dependence of the coefficients requires hypotheses concerning the nature of the electrical current systems throughout the shell. The
coefficients, gm

ni, gm
ne, gm

nv , and hm
ni , hm

ne, hm
nv , which are constants when determined over a single sphere, will generally have a radial dependence

when determined from magnetic field values throughout a thick spherical shell, such as from a combination of ground and satellite data. It is
therefore appropriate to denote them gm

ni(r ), gm
ne(r ), gm

nv(r ) and hm
ni(r ), hm

ne(r ), hm
nv(r ).

Thus, to determine a model for the magnetic flux density of the Earth, B(r , θ , φ), throughout a spherical shell, we start with the
representation

B(r, θ, φ) =
N∑

n=1

n∑
m=0

[
gm

ni (r )Gm
ni (θ, φ) + hm

ni (r )Hm
ni (θ, φ) + gm

ne(r )Gm
ne(θ, φ) + hm

ne(r )Hm
ne(θ, φ) + gm

nv(r )Gm
nv(θ, φ) + hm

nv(r )Hm
nv(θ, φ)

]
. (8.1)

The summation over n has been truncated at n = N , but any sufficiently smooth vector field can be represented by a series of the form (8.1)
in the limit as N → ∞, because vector spherical harmonics are complete. The non-potential toroidal field based on eq. (4.22) is given by
gm

nv(r ) Gm
nv(θ , φ) + hm

nv (r ) Hm
nv(θ , φ), but because of the as yet undetermined variation with radius, the other terms in eq. (8.1) may also be

non-potential fields. Such non-potential poloidal fields were not included in Schmidt’s extension of Gauss’s analysis. We now examine ways
to restrict the radial dependence of the coefficients in eq. (8.1).

8.1 The divergence of B

The classical vector harmonic fields defined by eqs (4.6), (4.11) and (4.23) all have zero divergence. However, this is not necessarily the case
for the first two when the more general radial dependence of eq. (8.1) is introduced. The divergences are

∇ · [
gm

ni (r )Gm
ni (θ, φ)

] = (n + 1)

[
gm

ni (r )

dr
+ n + 2

r
gm

ni (r )

]
Pm

n (cos θ ) cos mφ, (8.2)

∇ · [
gm

ne(r )Gm
ne(θ, φ)

] = −n

[
dgm

ne(r )

dr
− n − 1

r
gm

ne(r )

]
Pm

n (cos θ ) cos mφ, (8.3)

∇ · [
gm

nv(r )Gm
nv(θ, φ)

] = 0, (8.4)

with corresponding results for Hm
ni (θ , φ), Hm

ne(θ , φ) and Hm
nv(θ , φ).

The sum of all the contributions must be divergence-free everywhere, and therefore it follows from eqs (8.2) and (8.3) that the coefficient
of Pm

n (cos θ ) cos mφ in the expression for the divergence of B must be zero, and therefore

(n + 1)

[
dgm

ni (r )

dr
+ n + 2

r
gm

ni (r )

]
− n

[
dgm

ne(r )

dr
− n − 1

r
gm

ne(r )

]
= 0, (8.5)

and similarly for the coefficient of Pm
n (cos θ ) sin mφ,

(n + 1)

[
dhm

ni (r )

dr
+ n + 2

r
hm

ni (r )

]
− n

[
dhm

ne(r )

dr
− n − 1

r
hm

ne(r )

]
= 0. (8.6)

The eq. (8.5) is not sufficient to specify the two independent functions gm
ni(r ), gm

ne(r ) and similarly eq. (8.6) is not sufficient to specify hm
ni(r ),

hm
ne(r ). The sources of the magnetic flux density need to be known or their geometry specified.

From eq. (8.4), the functions gm
nv(r ), hm

nv(r ), for the non-potential toroidal component of the field, are not constrained by the mathematical
condition of zero divergence.

8.2 The curl of B

The Schmidt non-potential extension to the Gauss internal–external analysis of magnetic field values is essential, although incomplete, for
the analysis of satellite magnetic data gathered in the region between the ionosphere and magnetosphere, where electrical current systems are
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known to flow, particularly field-aligned currents. Hence, there are mathematical and physical reasons for including the non-potential toroidal
field and the non-potential poloidal field in the analysis of satellite magnetic data.

The currents associated with the representation (8.1) are given by its curl, because, according to Ampère’s Law, in the absence of
displacement currents,

∇ × B = µ0 J, (8.7)

where J is the current density. Of course, an arbitrary curl-free potential field could be added to the magnetic field, so that

∇ × (B + ∇V ) = µ0 J.

Therefore, given magnetic flux density B, the current density J is known, but given the current density J, the magnetic flux density is known
only to within a curl-free gradient field. Vector algebra gives

∇ × [
gm

ni (r )Gm
ni (θ, φ)

] =
[

dgm
ni (r )

dr
+ n + 2

r
gm

ni (r )

] (
− m

sin θ
Pm

n sin mφeθ − d Pm
n

dθ
cos mφeφ

)
, (8.8)

∇ × [
gm

ne(r )Gm
ne(θ, φ)

] =
[

dgm
ne(r )

dr
− n − 1

r
gm

ne(r )

] (
− m

sin θ
Pm

n sin mφeθ − d Pm
n

dθ
cos mφeφ

)
, (8.9)

∇ × [
gm

nv(r )Gm
nv(θ, φ)

] = n(n + 1)gm
nv(r )

1

r
Pm

n cos mφer − 1

r

d

dr

[
rgm

nv(r )
] (

−d Pm
n

dθ
cos mφeθ + m

sin θ
Pm

n sin mφeφ

)
, (8.10)

with analogous results for Hm
ni (θ , φ), Hm

ne(θ , φ) and Hm
nv(θ , φ).

Eqs (8.8)–(8.10) show that, apart from curl-free arbitrary scalar potential fields, the non-potential toroidal fields gm
nv(r ) Gm

nv(θ , φ) and
hm

nv(r ) Hm
nv(θ , φ) are the only magnetic fields arising from an electrical current system having a radial component. The current systems

associated with the non-potential toroidal field coefficients gm
nv and hm

nv , called the non-potential field in the Gauss–Schmidt analysis, can be
seen from the right hand side of eq. (8.10) to be poloidal with er , eθ , eφ components and are not restricted to radial components only.

Given only spherical harmonic coefficients for the field determined over a single spherical surface, Schmidt chose a/r for the functions
gm

nv(r ), hm
nv(r ), in which case

d

dr

[
rgm

nv(r )
] = 0,

d

dr

[
rhm

nv(r )
] = 0,

leading directly to a purely radial (Earth–air) current system. The choice of (radial) Earth–air currents to represent the non-potential toroidal
field is not the only possible choice.

Eqs (8.8) and (8.9) are for toroidal current systems, whilst eq. (8.10) is for a poloidal current system. From the definition (4.24) of Gm
nv,

it follows that the results of eqs (8.8) and (8.9) can be written

∇ × [
gm

ni (r )Gm
ni (θ, φ)

] =
[

dgm
ni (r )

dr
+ n + 2

r
gm

ni (r )

]
Gm

nv(θ, φ)

= µ0 jm
nvi (r )Gm

nv(θ, φ), (8.11)

∇ × [
gm

ne(r )Gm
ne(θ, φ)

] =
[

dgm
ne(r )

dr
− n − 1

r
gm

ne(r )

]
Gm

nv(θ, φ)

= µ0 jm
nve(r )Gm

nv(θ, φ). (8.12)

Eqs (8.11) and (8.12) show the relationships

jm
nvi (r ) = 1

µ0rn+1

d

dr

[
rn+2gm

ni (r )
]
, jm

nve(r ) = rn−1

µ0

d

dr

[
1

rn−1
gm

ne(r )

]
.

From eqs (4.8) and (4.14), we can combine Gm
ni (θ , φ) and Gm

ne(θ , φ) to give purely radial and purely tangential fields:

Pm
n cos mφer = 1

2n + 1

[
Gm

ni (θ, φ) − Gm
ne(θ, φ)

]
−d Pm

n

dθ
cos mφeθ + m

sin θ
Pm

n sin mφeφ = 1

2n + 1

[
nGm

ni (θ, φ) + (n + 1)Gm
ne(θ, φ)

]
.

(8.13)

From eq. (8.13), it follows that eq. (8.10) for the curl of the non-potential toroidal field can be written in terms of internal and external vector
spherical harmonics as

∇ × [
gm

nv(r )Gm
nv(θ, φ)

] = − n

2n + 1

[
dgm

nv(r )

dr
− n

r
gm

nv(r )

]
Gm

ni (θ, φ) − n + 1

2n + 1

[
dgm

nv(r )

dr
+ n + 1

r
gm

nv(r )

]
Gm

ne(θ, φ), (8.14)

with corresponding results for Hm
nv(θ , φ), Hm

ni (θ , φ) and Hm
ne(θ , φ).
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From eqs (8.11) to (8.14), the curl of the magnetic field B(r , θ , φ) defined by eq. (8.1) is

∇ × B(r, θ, φ) =
N∑

n=1

n∑
m=0

[{[
dgm

ni (r )

dr
+ n + 2

r
gm

ni (r )

]
+

[
dgm

ne(r )

dr
− n − 1

r
gm

ne(r )

]}
Gm

nv(θ, φ)

− n

2n + 1

[
dgm

nv(r )

dr
− n

r
gm

nv(r )

]
Gm

ni (θ, φ) − n + 1

2n + 1

[
dgm

nv(r )

dr
+ n + 1

r
gm

nv(r )

]
Gm

ne(θ, φ)

]

+ corresponding terms inHm
nv, Hm

ni , and Hm
ne. (8.15)

Thus, ∇ × B consists of a toroidal electrical current from internal and external fields, and a poloidal electrical current from the non-potential
fields.

To determine the radial dependence of the coefficients, we assume that there is no toroidal current system flowing in the shell throughout
which data are being analyzed. This no toroidal current assumption (NTC) eliminates the non-potential poloidal field from coefficients gm

ni(r ),
hm

ni(r ) and gm
ne(r ), hm

ne(r ). The radial dependence of the non-potential toroidal field from gm
nv(r ), hm

nv(r ) is then determined for two simple
hypotheses concerning the poloidal currents: (PC1) purely radial Earth–air currents; or (PC2) field-aligned currents. Other hypotheses are
possible but are not considered here.

8.3 (NTC) No toroidal electrical current, Gauss–Schmidt analysis

In the absence of displacement current, ∇ × H = J and therefore the electrical current density J has no divergence. Consequently, the
electrical current system has poloidal and toroidal components.

The basic assumption made in the standard Gauss–Schmidt analysis is that there is no toroidal current system over the spherical surfaces
for which data is available. This excludes from the analysis data gathered in those regions such as the ionosphere or magnetopause. The
assumption of no toroidal current system, requires that the coefficients of Gm

nv(θ , φ) and Hm
nv(θ , φ) in eq. (8.15) are zero, which in turn requires

that internal and external field coefficients are constrained by[
dgm

ni (r )

dr
+ n + 2

r
gm

ni (r )

]
+

[
dgm

ne(r )

dr
− n − 1

r
gm

ne(r )

]
= 0, (8.16)

with an analogous equation for hm
ni(r ), hm

ne(r ). Eq. (8.15) reduces to

∇ × B(r, θ, φ) =
N∑

n=1

n∑
m=0

{
− n

2n + 1

[
dgm

nv(r )

dr
− n

r
gm

nv(r )

]
Gm

ni (θ, φ) − n + 1

2n + 1

[
dgm

nv(r )

dr
+ n + 1

r
gm

nv(r )

]
Gm

ne(θ, φ)

}

+ corresponding terms in Hm
ni and Hm

ne.
(8.17)

Eq. (8.5) for a solenoidal magnetic field, together with eq. (8.16), require that two separate equations must be satisfied, namely

dgm
ni (r )

dr
+ n + 2

r
gm

ni (r ) = 0 and
dgm

ne(r )

dr
− n − 1

r
gm

ne(r ) = 0, (8.18)

with corresponding equations for hm
ni(r ), hm

ne(r ). Solving the eqs (8.18), with the condition at a reference sphere r = a, that

gm
ni (a) = gm

ni and gm
ne(a) = gm

ne, (8.19)

the fields of internal and external origin have the well-known radial dependence,

gm
ni (r ) =

(
a

r

)n+2

gm
ni , and gm

ne(r ) =
(

r

a

)n−1

gm
ne, (8.20)

where gm
ni, gm

ne and hm
ni, hm

ne are constants, which is the basic mathematical form for the Gauss–Schmidt analysis dealing systematically with the
non-potential field.

The non-potential toroidal magnetic flux density Bv(r , θ , φ) is defined by

Bv(r, θ, φ) =
N∑

n=1

n∑
m=0

[
gm

nv(r )Gm
nv(θ, φ) + hm

nv(r )Hm
nv(θ, φ)

]
.

The hypothesis that there is no poloidal current requires that the coefficients of Gm
ni (θ , φ) and Gm

ne(θ , φ) in eq. (8.17) be zero, i.e.

dgm
nv(r )

dr
− n

r
gm

nv(r ) = 0 and
dgm

nv(r )

dr
+ n + 1

r
gm

nv(r ) = 0,

dhm
nv(r )

dr
− n

r
hm

nv(r ) = 0 and
dhm

nv(r )

dr
+ n + 1

r
hm

nv(r ) = 0, (8.21)

holds on any surface r = constant. These equations are satisfied when

gm
nv(R) = 0,

dgm
nv

dr

∣∣∣∣
r=R

= 0 and hm
nv(R) = 0,

dhm
nv

dr

∣∣∣∣
r=R

= 0, (8.22)

so that not only are the non-potential coefficients gm
nv and hm

nv both required to be zero over the reference sphere r = R, but so also are their
radial gradients.
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8.4 (PC1) Radial Earth–air currents

As noted in eq. (8.4), the functions gm
nv(r ) and hm

nv(r ) giving the radial dependence of the non-potential toroidal field are not constrained by
the requirement that magnetic flux density should be divergence-free. With the choice

gm
nv(r ) = gm

nv

a

r
and hm

nv(r ) = hm
nv

a

r
, (8.23)

in which gm
nv and hm

nv are numerical coefficients in units of teslas determined from spherical harmonic analysis over the surface of a sphere
r = a, the expression (8.10) reduces to a radial component only:

∇ × [
gm

nv(r )Gm
nv(θ, φ)

] = n(n + 1)gm
nv

a

r 2
Pm

n (cos θ ) cos mφ er . (8.24)

By eqs (8.8), (8.9) and (8.20),

∇ × Bi (r, θ, φ) = 0 and ∇ × Be(r, θ, φ) = 0,

and the corresponding hypothetical radial current system is, by eq. (8.10),

µ0 J(r, θ, φ) = ∇ × [Bi (r, θ, φ) + Be(r, θ, φ) + Bv(r, θ, φ)]

= ∇ ×
{

a

r

N∑
n=1

n∑
m=0

[
gm

nvGm
nv(θ, φ) + hm

nv Hm
nv(θ, φ)

]}

= a

r 2

N∑
n=1

n∑
m=0

n(n + 1)
(
gm

nv cos mφ + hm
nv sin mφ

)
Pm

n (cos θ ) er (8.25)

and, over a particular shell, r = a,

J(a, θ, φ) = 1

µ0a

N∑
n=1

n∑
m=0

n(n + 1)
(
gm

nv cos mφ + hm
nv sin mφ

)
Pm

n (cos θ ) er . (8.26)

Eq. (8.26) is used to provide a scalar representation of the radial current flow across the surface of the sphere, with positive values for a
radially outwards current, negative values for a radially inwards current.

8.5 (PC2) Field-aligned currents

A second example where the radial dependence of the toroidal magnetic field is fixed occurs with the hypothesis that the currents are aligned
to a magnetic field of either internal or external type.

For magnetic data observed at satellite altitudes, a hypothesis of field-aligned currents may be useful. The hypothesis assumes a non-
potential field Bv(r , θ , φ) corresponding to a current system ( 1

µ0
)∇ × Bv(r, θ, φ) that is parallel to a field of internal origin, assuming of

course, that any field of external origin is negligibly small. Thus,

∇ × Bv = k(r, θ, φ)

a
B, (8.27)

where the magnetic field along which the non-potential field current system is aligned is B(r , θ , φ), where

B(r, θ, φ) =
N∑

n=1

n∑
m=0

(
a

r

)n+2 [
Gm

n Gm
ni (θ, φ) + H m

n Hm
ni (θ, φ)

]
. (8.28)

For simplicity, we consider only the idealised case in which k(r , θ , φ) is a constant, k say. By eq. (4.23), for Bv(r , θ , φ), and eq. (8.14),

∇ × Bv(r, θ, φ) =
N∑

n=1

N∑
m=0

− n

2n + 1

[
dgm

nv(r )

dr
− n

r
gm

nv(r )

]
Gm

ni (θ, φ) − n + 1

2n + 1

[
dgm

nv(r )

dr
+ n + 1

r
gm

nv(r )

]
Gm

ne(θ, φ). (8.29)

However, by eqs (8.27) and (8.28),

∇ × Bv(r, θ, φ) = k

a

N∑
n=1

n∑
m=0

(
a

r

)n+2 [
Gm

n Gm
ni (θ, φ) + H m

n Hm
ni (θ, φ)

]
. (8.30)

Comparing coefficients in eqs (8.29) and (8.30),

− n

2n + 1

[
dgn

nv(r )

dr
− n

r
gm

nv(r )

]
= k

a

(a

r

)n+2
Gm

n , (8.31)

− n + 1

2n + 1

[
dgn

nv(r )

dr
+ n + 1

r
gm

nv(r )

]
= 0. (8.32)

From eq. (8.32), it follows that

gm
nv(r ) = C

1

rn+1
, (8.33)

where C is a constant. Substituting eq. (8.33) into eq. (8.31) gives C =(k/n)an+1Gm
n and therefore

gm
nv(r ) = k

n

(a

r

)n+1
Gm

n . (8.34)
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Eq. (8.34) shows that the coefficients Gm
n , Hm

n of a field of internal origin, to which the currents are aligned, will be based on the
non-potential field coefficients gm

nv(a), hm
nv(a), respectively,

Gm
n = n

k
gm

nv(a), H m
n = n

k
hm

nv(a), (8.35)

but that the radial dependence of the coefficients gm
nv(r ) will be of the form given in eq. (8.34).

9 S P H E R I C A L H A R M O N I C A N A LY S I S

Over any sphere, magnetic flux density measurements can be represented as a sum of vector spherical harmonics and if the chosen sphere is
the Earth, then the fields are the usual internal, external and non-potential fields. Thus, apart from the usual random error term, we write

B(a, θ, φ) =
N∑

n=1

n∑
m=0

{[
gm

ni G
m
ni (θ, φ) + hm

ni Hm
ni (θ, φ)

] + [
gm

neGm
ne(θ, φ) + hm

ne Hm
ne(θ, φ)

] + [
gm

nvGm
nv(θ, φ) + hm

nv Hm
nv(θ, φ)

]}
. (9.1)

Magnetic field components in spherical polars, corresponding to north, east and radially downwards, are denoted X , Y and Z, where

X = −B · eθ , Y = B · eφ, Z = −B · er . (9.2)

These are the geocentric, not geographic definitions of X , Y and Z. Spherical harmonic analyses of data over a sphere, corresponding to a
reference sphere, r = a, requires the analysis of X (a, θ , φ), Y (a, θ , φ) and Z (a, θ , φ) whose theoretical expressions are as follows:

X (a, θ, φ) =
N∑

n=1

n∑
m=0

[(
gm

ni + gm
ne

)
cos mφ + (

hm
ni + hm

ne

)
sin mφ

] d Pm
n

dθ
+ (

gm
nv sin mφ − hm

nv cos mφ
) m

sin θ
Pm

n , (9.3)

Y (a, θ, φ) =
N∑

n=1

n∑
m=0

[(
gm

ni + gm
ne

)
sin mφ − (

hm
ni + hm

ne

)
cos mφ

] m

sin θ
Pm

n − (
gm

nv cos mφ + hm
nv sin mφ

) d Pm
n

dθ
, (9.4)

Z (a, θ, φ) =
N∑

n=1

n∑
m=0

[−(n + 1)
(
gm

ni cos mφ + hm
ni sin mφ

)
Pm

n + n
(
gm

ne cos mφ + hm
ne sin mφ

)
Pm

n

]
. (9.5)

The analysis of X (a, θ , φ) and Y (a, θ , φ) alone gives only the sums of internal and external coefficients (gm
ni + gm

ne) and (hm
ni + hm

ne),
but can be expanded to also give the non-potential toroidal field coefficients gm

nv(a) and hm
nv(a), if required. Including the analysis of the

radial component of the field Z (a, θ , φ) allows separation of the coefficients gm
ni, hm

ni for the internal field and gm
ne, hm

ne for the external field. A
hypothesis concerning the non-potential toroidal field, such as Earth–air radial currents or field-aligned currents, is made after the coefficients
gm

nv and hm
nv have been determined.

If it were possible, determination of the non-potential field coefficients for different values of r, would give an indication of the radial
dependence of the non-potential field coefficients, and could help to distinguish between the Earth–air radial current hypothesis and the
field-aligned current hypothesis.

Another method of spherical harmonic analysis of magnetic data over a reference sphere is to use fixed Cartesian field components (defined
in terms of a Cartesian coordinate system at the origin) in place of spherical polar components. Surface spherical harmonic coefficients are
determined for each of the three Cartesian components and, because of the orthogonality of the vector spherical harmonics corresponding to
internal, external and non-potential fields, the required coefficients can be determined independently from simple combinations of the surface
spherical harmonics coefficients, e.g. Winch (1968).
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Figure 1. Standard errors for internal field coefficients gm
n epoch 1960, by Langel & Estes (1987). Standard errors are shown in the lower curve, together with

a linear trend. The upper curve is for the same standard errors multiplied by
√

n + 1. The linear trend for the upper graph shows a smaller rate of decrease with
degree n than the lower graph.
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Figure 2. Standard errors for internal field coefficients hm
n epoch 1960, by Langel & Estes (1987). Standard errors are shown in the lower curve, together with

a linear trend. The upper curve is for the same standard errors multiplied by
√

n + 1. The linear trend for the upper graph shows a smaller rate of decrease with
degree n than the lower graph.

1 0 S TA N DA R D D E V I AT I O N S O F T H E C O E F F I C I E N T S

The Schmidt-normalized main field coefficients gm
n and hm

n all tend to become smaller with increasing degree, with the dipole term, of degree
1, being the largest. This could of course be entirely the result of the physics of the magnetism of the Earth, but then one can easily see that
the standard deviations of the same coefficients (when they are given, for example, Langel & Estes 1987, as standard errors) also diminish
with increasing degree. By determining coefficients for the three orthonormal vector fields, with the equations of condition suitably weighted
to provide errors with a zero mean and common variance, the standard deviations of the coefficients, assuming residuals are independent and
distributed with a zero mean and common variance, will be the same for all coefficients.

Figs 1 and 2 show the effect of applying the weights determined above, to the standard errors of Langel & Estes (1987). Fig. 1 is for the
gm

n standard errors and Fig. 2 is for the corresponding hm
n standard errors, both figures showing a solid line of best fit to the coefficients. The

lower, solid curves in each figure are for standard deviations, as published. The unwanted decrease in magnitude of the standard errors as the
degree increases is shown by the slope of the line of best fit to the standard errors. The upper, dashed curves are for the same standard errors,
but with weights applied as described above. The slope of the line of best fit to the weighted standard errors proposed here is smaller than that
for the unweighted standard errors.

The weighting proposed here, to produce normalized coefficients and a constant standard error, does tend to amplify the increase of
standard error with order m, within each degree n, that occurs in the Langel & Estes (1987) standard error coefficients. Lowes & Olsen (2004)
have shown that the increase of standard deviation with order m, within each degree n, is seen in the analysis of total intensity data alone and
may therefore arise from the inclusion of total intensity values in the Langel & Estes (1987) basic data set. However, the reduction in slope
of the line of best fit to the standard deviations that occurs for weighted coefficients shows that the decrease in magnitude of the standard
deviations with increasing order is solely the result of the non-orthonormal form of the mathematical functions chosen for the analysis and is
not the result of any physical cause.

Numerical coefficients should be given for functions whose weight is in some sense equal to 1. That the coefficients as computed at
present diminish rather too quickly with increasing degree is confirmed by this study of the standard deviations.
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Schmidt (1899) defined Schmidt quasi-normalized functions in order to simplify the addition theorem for associated Legendre functions.
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