{ "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9-final" }, "orig_nbformat": 2, "kernelspec": { "name": "python3", "display_name": "Python 3.6.9 64-bit", "metadata": { "interpreter": { "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" } } } }, "nbformat": 4, "nbformat_minor": 2, "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os,sys,math\n", "import numpy as np\n", "\n", "import matplotlib.pyplot as plt\n", "\n", "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "\n", "import mnist_dataloader\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "torch.Size([])\ntorch.Size([])\n[1, 2, 3]\n" ] } ], "source": [ "a = torch.randn(10,14)\n", "b = a.shape[1:1]\n", "print(b)\n", "b.numel()\n", "\n", "print(b)\n", "\n", "b = torch.Size([1])\n", "c = torch.Size([2,3])\n", "d = torch.Size(torch.cat([torch.tensor(b),torch.tensor(c)]))\n", "\n", "d = [*b,*c]\n", "\n", "print(d)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ] }