You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

85 lines
1.6 KiB
Plaintext

{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9-final"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python3",
"display_name": "Python 3.6.9 64-bit",
"metadata": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os,sys,math\n",
"import numpy as np\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"\n",
"import mnist_dataloader\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"torch.Size([])\ntorch.Size([])\n[1, 2, 3]\n"
]
}
],
"source": [
"a = torch.randn(10,14)\n",
"b = a.shape[1:1]\n",
"print(b)\n",
"b.numel()\n",
"\n",
"print(b)\n",
"\n",
"b = torch.Size([1])\n",
"c = torch.Size([2,3])\n",
"d = torch.Size(torch.cat([torch.tensor(b),torch.tensor(c)]))\n",
"\n",
"d = [*b,*c]\n",
"\n",
"print(d)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
]
}